Architecture et propriétés des singularités des systèmes découplés

dc.contributor.authorFakroune Yamina
dc.date.accessioned2023-02-13T08:33:21Z
dc.date.available2023-02-13T08:33:21Z
dc.date.issued2021
dc.description.abstractDans cette thèse, nous nous intéressons aux systèmes dynamiques discrets chaotiques, modélisés par des transformations bidimensionnelles non linéaires et non inversibles. Cette étude est une analyse des comportements complexes et chaotiques. Nous distinguons deux grandes parties. Dans la première partie, l’étude concerne les systèmes couplés et leurs propriétés relatives aux ensembles invariants qui peuvent être des variétés stables/instables associées aux points fixes et aux cycles de type col, ou des courbes fermées issues de bifurcations de Neïmark-Hopf. Nous considérons les bifurcations de contact entre la frontière d’attracteurs et la frontière de leurs bassins d’attraction et les bifurcations pouvant donner des bassins fractals. Dans la seconde partie, les systèmes découplés sont considérés. Nous déterminons les points fixes, les bassins d’attractions et l’architecture des cycles d’ordres 2, 4, 8 et 16 pour n = 2k et n = 2k+1. Nous verrons que la dynamique de ce type de systèmes bidimensionnels se réduit à celle d’un système uni-dimensionnel et leurs bifurcations sont liées.
dc.identifier.urihttps://dspace.univ-annaba.dz//handle/123456789/1820
dc.language.isofr
dc.titleArchitecture et propriétés des singularités des systèmes découplés
dc.typeThesis
dspace.entity.type
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
These-Fakroune-Yamina.pdf
Size:
4.43 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: