Browsing by Author "Slimane MEROUANI"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Activité sonochimique et taille des bulles acoustiques en solutions aqueuses : Étude théorique basée sur des modèles de la cavitation acoustique(2014) Slimane MEROUANICe travail de thèse porte sur l’étude de l’activité sonochimique et la taille des bulles acoustiques en solution aqueuse en utilisant un modèle théorique qui combine l’équation de Keller-Miksis pour la dynamique d’oscillation d’une bulle de cavitation acoustique avec un modèle de cinétique chimique consistant en une série de réactions chimiques se déroulant dans la bulle au moment de son implosion violente sous l’action d’une onde ultrasonore. L’influence des paramètres opératoires sur l’activité chimique des bulles et sur leur taille a également été étudiée. Les résultats obtenus montrent que la quantité des oxydants augmente avec l’augmentation de l’amplitude acoustique dans l’intervalle 1,5–3 atm. Il existe une pression statique optimale pour une production maximale des oxydants dans la bulle. La valeur optimale de la pression statique est déplacée vers des valeurs élevées lorsque l’amplitude acoustique augmente. Similairement, il existe une température optimale pour la production des oxydants dans la bulle. La valeur de la température optimale est déplacée vers les basses températures lorsque l’amplitude acoustique augmente. L’effet de la fréquence et de l’amplitude acoustique sur la taille de la population active a été examiné. Des simulations numériques des réactions chimiques se déroulant dans la bulle ont été effectuées pour plusieurs rayons ambiants de la bulle à différentes fréquences et amplitudes acoustiques. Les résultats numériques ont montré qu’il existe un rayon optimal pour une production maximale des oxydants dans la bulle. La gamme de rayons ambiants pour la population active diminue avec l’augmentation de la fréquence et augmente lorsque l’amplitude acoustique augmente. Le rayon optimal diminue avec l’augmentation de la fréquence et augmente lorsque l’amplitude acoustique augmente (tendance générale). Les résultats des simulations effectuées pour une large gamme de conditions opératoires ont montré qu’il existe une température optimale d’environ 5200±200 K et une pression optimale d’environ 2500±200 atm pour la production des •OH dans la bulle. Ces valeurs optimales estimées de température et de pression sont en bon accord avec celles déterminées expérimentalement. L’énergie de la bulle augmente linéairement avec l’augmentation de l’amplitude acoustique dans l’intervalle 1,5–3 atm et diminue lorsque la fréquence augmente dans l’intervalle 200–1000 kHz. Il existe une pression statique optimale à laquelle la puissance est maximale. La valeur optimale de la pression statique est déplacée vers des pressions élevées lorsque l’amplitude acoustique augmente. La puissance de la bulle est légèrement affectée par l’augmentation de la température dans l’intervalle 10–60 °CItem Dégradation sonochimique de la Rhodamine B en solutions aqueuses: Effets des ions hydrogénocarbonates et carbonates et des matrices complexes(2010) Slimane MEROUANICe mémoire est centré sur l'étude de la dégradation sonochimique d’un colorant basique récalcitrant, la Rhodamine B (RhB), en phase aqueuse par application d’une onde ultrasonore de haute fréquence (300 kHz). Ce travail a montré que la technique ultrasonore peut être employée efficacement pour l’élimination de la RhB. La production d’espèces oxydantes par les ondes ultrasonores a été déterminée par la dosimétrie KI, la réaction de Fricke et la production de H2O2 dans l’eau. Les trois méthodes étudiées montrent clairement la production d’espèces oxydantes pendant la sonolyse à 300 kHz. L’étude menée sur l’influence des paramètres opératoires sur les trois dosimétries sonochimiques a montré que la production d’espèces oxydantes est fortement influencée par les conditions de l’expérimentation. La vitesse de dégradation de la RhB dépend de la concentration initiale du colorant, de la puissance acoustique, du pH et de la température de la solution. L’ajout de Na2SO4 à la solution du colorant montre l’existence d’un optimum de concentration en sel pour améliorer la vitesse de dégradation de la RhB. La dégradation sonochimique menée dans les eaux naturelles et distillée ne montre aucune différence significative entre la dégradation dans l’eau de source et l’eau de mer et celle obtenue dans de l’eau distillée. L’addition du fer améliore significativement la vitesse de dégradation du polluant. L’ajout de H2O2 dans le système augmente sensiblement l’efficacité de la dégradation. La dégradation sonolytique de la RhB est fortement intensifiée par l’addition de CCl4. La saturation en air du milieu réactionnel avant le traitement sonochimique améliore le rendement de dégradation. La présence de tert-butanol à faibles concentrations accélère légèrement la vitesse de dégradation. La dégradation de la RhB est efficacement inhibée, mais pas complètement, pour des concentrations élevées en tert-butanol. La présence d’une concentration élevée de saccharose ou de glucose dans la solution de RhB ne conduit qu’à une faible réduction de la vitesse de dégradation. Sous l’action des ultrasons, 58 % de la DCO initiale sont éliminés après 240 minutes de traitement. Sous l’action de l’irradiation ultrasonore qui génère des radicaux HO• , le radical carbonate (CO3 •-) peut être formé comme un produit secondaire de la sonolyse de l’eau quand elle contient des ions hydrogénocarbonates ou carbonates. L’efficacité de la destruction sonolytique de la RhB est clairement intensifiée par l’addition des ions hydrogénocarbonates et carbonates, particulièrement pour les faibles concentrations en RhB. En présence de compétiteurs organiques à des concentrations élevées tels que le saccharose et le glucose, la destruction ultrasonore du colorant diminue en présence d’hydrogénocarbonate et carbonate, et le degré d’inhibition est plus remarquable en présence de glucose qu’en présence de saccharose. Durant la sonolyse d’une solution aqueuse de RhB (0,5 mg/L) contenant 3 g/L d’hydrogénocarbonate et 10 g/L de carbonate, l’oxydation complète de la solution est achevée après 60 et 40 minutes d’irradiation respectivement. Ceci indique que les radicaux carbonates sont plus convenables que les radicaux HO• à l’oxydation des colorants organiques tels que la RhB.