Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "GUEHRIA, Sonia"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Les approches ensemblistes pour la classification multi-label des données à grandes échelles
    (Université Badji Mokhtar Annaba, 2024) GUEHRIA, Sonia
    L'étude de recherche menée dans cette thèse s'articule autour de deux nouvelles approches ensemblistes: ConfBoost et DisEMLC. L'objectif visé par ces deux approches est de développer des systèmes robustes et généralisables, capables de relever les défis surmentionnés, tout en assurant la scalabilité des DML. L'approche ConfBoost constitue un méta-modèle qui combine plusieurs Classifieurs Ensemble Multi-Label complémentaires et hétérogènes, tels qu'ECC, EPS, RAKEL, RF-PCT. Cette approche repose sur un paradigme de Stacking pondéré, utilisant une pondération des labels couplée à des seuils ajustés. Des expériences approfondies menées sur des ensembles de données Multi-Label de référence ont mis en évidence l'efficacité et le potentiel de ConfBoost en tant que méthode avancée pour les tâches de Classification Multi-Label.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback