Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "BENATALLAH, ISSRA NADA"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Bayesian statistical studies In the presence of censored data
    (Université Badji Mokhtar Annaba, 2025) BENATALLAH, ISSRA NADA
    This thesis considers Bayesian inference for some recent survival time models in the presence of ce nsoring. The Xlindley model, Zeghdoudi model, and Xexponential model are the intriguing models. With type II right- censored data, the parameters for these three models were calculated using a Bayesian technique under various loss functions, both symmetric (quadratic loss) and asymmetric (LINEX loss and entropy) and balanced. Numerical approaches were used in the classical approach, where the estimators are solutions of a nonlinear system whose solutions are not analytically explicit. Estimators are provided as a ratio of integrals in the Bayesian technique. Simulations and data analysis were conducted using Markov Chain Monte Carlo (MCMC) techniques, namely the Metropolis-Hastings algorithm, to demonstrate the outcomes. Finally, we used the Pitman criterion and the integrated mean square error (IMSE) criterion to compare Bayesian estimators and maximum likelihood estimators

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback