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Retrial queueing systems modelling with interrupted service and

orbital search

Abstract

In this work, we first propose an M/M/1 retrial queue system with interrupted service by the
customer being served, where the access to the orbit is done after a first pass through the server,
and we also consider a single server, whose orbit and queue have infinite capacity. Our interest is in
the customers who can decide between leaving the system forever or joining the orbit for coming
back again to the server after a random time in order to get another service, so we present the
generation functions of different stationary distributions and the calculation of some performance
measures. Using the infinitesimal generator, we obtain the stationary distributions of this model, and
we also use the matrix analytical method to provide some numerical results to illustrate the impact
of different parameters on the model's characteristics.

In addition to the above assumptions, we assume that the retrial policy is linear. Then, we generalize
the first model, taking into account the fact that the access to the server can be made in the
following three cases: from the queue by a primary customer, or from the orbit by a secondary
customer (who have already made at least one pass through the server), or the server itself searches
for customers in orbit immediately after the end of a service (assuming the queue is free).

Given the complexity of the stochastic analysis of the second model, we again use the matrix analytic
method, which allows us to obtain an approximation of the limiting probabilities. Some useful
performance measures are computed. These results are supported by numerical examples and
simulations to study the influence of some parameters on the characteristics of the system.

Keywords Retrial queue, interrupted service, orbital search, linear retrial policy, matrix-analytic
method, performance measures.



Modélisation par les systéemes de files d’attente avec rappels, service
interrompu et recherche en orbite

Résumé

Dans ce travail, nous proposons tout d'abord un systéme de file d'attente M/M/1 avec interruption
du service par le client, ou l'acces a l'orbite se fait apres un premier passage par le serveur, et nous
considérons également un serveur unique, dont l'orbite et la file d'attente ont une capacité infinie.
Nous nous intéressons aux clients qui peuvent décider de quitter le systéme pour toujours ou de
rejoindre |'orbite pour revenir au serveur apres un temps aléatoire afin d'obtenir un autre service,
nous présentons donc les fonctions génératrices de la distribution stationnaire et le calcul de
qguelques mesures de performance. En utilisant le générateur infinitésimal, nous obtenons les
distributions stationnaires de ce modeéle, et nous utilisons également la méthode analytique
matricielle pour fournir quelques résultats numériques afin d'illustrer l'impact des différents
parametres sur les caractéristiques du modele.

En plus des hypothéses précédentes, nous supposons que la politique de rappels est linéaire. Alors,
nous généralisons le premier modele, en prenant en considération le fait que I'accés au serveur peut
se faire dans les trois cas suivants : depuis la file d'attente par des clients primaires, ou depuis I'orbite
par des clients secondaires (qui ont déja fait au moins un passage par le serveur), ou encorelorsque le
serveur lui-méme cherche des clients en orbiteimmédiatement apres la fin d’un service (en
supposant que la file d'attente est libre).

Etant donné la complexité de I'analyse du second modéle, nous utilisons & nouveau la méthode
analytique matricielle, qui nous permet d'obtenir une approximation des probabilités limites.
Quelques mesures de performance utiles sont calculées. Ces résultats sont étayés par des exemples
numériques et des simulations pour étudier l'influence de certains parameétres sur les
caractéristiques du systeme.

Mots-Clés File d'attente avec rappel, service interrompu, recherche en orbite, politique de

rappels linéaire, méthode d'analyse matricielle, mesures de performance.
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INTRODUCTION

The word queue comes from the French interpretation of Latin cauda, meaning a tail. According
the Funk and Wagnall’s New International Dictionary, a queue is “a line of persons or vehicles
waiting in the order of their arrival”. The word queue is the common way to refer to a line in
England.

In fact, Queueing theory is a branch of applied probability theory that pertains to the study
of waiting lines (queues) and service system prone to congestion, including the arrival of units
(customers, calls, messages, etc...) to servers, the waiting of units for servers, the processing of
units by servers and the departure of units.

As a literature survey, which covers the topic of queueing system, we suggest classifying them
into the following four categories:

Early Literature with Standard queues: Agner Krarup Erlang (1878-1929), a Danish math-
ematician, invented the fields of traffic engineering and queueing theory starting in the 1900s.
While working for the Copenhagen Telephone Company, he was confronted with the classic
problem of determining how many circuits were needed to provide an acceptable telephone ser-
vice. Then, he formed the mathematical way of determining how many telephone operators were
needed to handle a given volume of calls. Besides, he is the founder on the theory of telephone
traffic and he published, over his career, papers, starting in 1909 that became the foundation
of queueing theory. Likewise, he developed the Erlang probability distribution, which plays a
significant role in various queueing applications.

Research into the application of the idea to telephony continued after Erlang. In 1927, E. C.
Molina published his paper "Application of the Theory of Probability to Telephone Trunking
Problems”, which was accompanied 12 months later by Thornton Fry’s book “Probability and
Its Engineering Uses”, which elevated a variety of Erlang’s earlier research. Within the early
nineteen thirties, Felix Pollaczek made a few extra studies on Poisson input, arbitrary output,
and one/more-channel issues. Extra researches became Further research was carried out at that
time in Russia by Kolmogorov and Khintchine, in France by Crommelin’s studies, and in Sweden
by Palm.

More to the point, we refer to one of the comprehensive books authored by Donald Gross et al



(2008), another informative publication on Fundamentals of Queueing Systems Statistical Meth-
ods for Analyzing Queueing Models was by Thomopoulos (2012).

Retrial queues: The old queueing models don’t consider the repetitions phenomenon and
therefore cannot be used to solve a variety of vital real-life situations. Kosten (1973) (p.33)
points out that any theoretical result should be considered suspect if it does not take into ac-
count the effect of repetition. Retrial queues (or queues with repeated attempts, repeated calls,
etc...) were introduced to deal with specific situations or to understand the fundamental stochas-
tic processes.

One of the earliest papers on retry queues was done by Kosten ( 1947), on the effect of repeated
calls in the theory of blocking probabilities. Wilkinson (1956) encouraged the use of a truncated
model to solve numerically the Kolmogorov equations of the main model in the case of unlimited
orbit capacity. Cohen (1957) was the author who treated the case of a M /M /C' queue, taking into
account retries and impatient customers. He also obtained the essential and sufficient conditions
for the ergodicity of retrial queues. However, the technique was primarily based on the spe-
cific solution of the Kolmogorov equations for the stationary distribution, leading to complicated
arguments.

Two extensive survey articles on retrial queues are by Yang & Templeton (1987) and Falin (1990),
covering, respectively, the developments up to mid 80’s and late 80's. Falin & Templeton (1997)
published a monograph on the subject, providing an excellent scenario of retrial queues.

Various techniques and results have been developed since the early work of Kosten ( 1947),
Wilkinson (1956), and Cohen (1957) for solving particular problems or understanding the ba-
sic stochastic processes. Analytic results are generally difficult to obtain due to the complicity of
retrial queueing models. That is why there are a large number of numerical and approximation
methods.

The first stochastic analysis bounding mean response time of the M/G/k under the Shortest
Remaining Processing Time (S RPT) scheduling policy by Isaac Grosof et al (2018), by comparing
the multi-server system with a single server system of the same service capacity, whereat they
showed that even in the worst case, the steady state amount of relevant work under SRPT — k
(the policy which uses multi-server SRPT on k servers) close to the steady state amount of
relevant work under SRPT—1 (SRPT on asingle server). However, beyond S RPT, they proved
similar response time bounds and optimality results for several other multi-server scheduling
policies which include PSJFE' (Pre-emptive Shortest Job First), RS (Remaining Size) and F'B
(Foreground-Background, also known as Least Attained Service (LAS)).

Queues with interruptions: In traditional models of queuing, the service facility used to be
available to serve clients, either at normal or reduced prices (caused by wear and tear or conges-
tion) throughout its availability. As a variant of classical queuing models, the service facility is
not continuously available because of:



1. The server goes on holiday when the system is empty, and resumes service if the queue has
built up to a certain threshold; such a case is called a vacation queueing model. (see Doshi
(1986), Tian & Zhang (2006) and Takagi (1991))

2. Failure of a server (or a device) or an unplanned stop (e.g. answering an urgent incoming
call, communicating with senior management, helping a co-worker) that needs an immedi-
ate response, in this case, the variant stops the current service, and after which the service
can be resumed. Models with this variant are described as queuing models with service
Interruptions.

3. A client can interrupt its service due to an external event. The models described in variant
(3) are termed queueing models with client-interrupted service. and

4. An external event may cause a catastrophic failure, leading the system to become empty
and the server to wait for the next arrival to resume service. Besides, the models under
variant (4) go under the caption queueing models with catastrophic emergencies, where
not only does the existing service get interrupted in these models, but also all the clients
present in the system also deleted.

5. Note that in pre-emptive priority queues, the services of lower-priority clients are inter-
rupted by higher-priority clients. (see Jaiswal (1961))

6. Client-induced service interruptions are possible, although they are not common in many
applications. The notable features of this type of interruption, as opposed to server in-
terruption, are that (a) the system can have more interrupted clients than the number of
servers in the system, and (b) the system can provide services to other clients while one or
more clients are being interrupted.

Depending on the situation, there are several possible ways to restore an interrupted service.
Such ways include (7) starting a service from the very beginning (repeat), (i7) starting a service
from where it got interrupted (resume), (i7i) a combination of both (i) and (i7), and the selec-
tion is done by looking at the way the (random) clocks (which are simultaneously started at the
time of onset of interruptions) expire, and (iv) denying a service to the one whose service got
interrupted.

Survey work by Krishnamoorthy et al. (2014) summarized many models that take into account the
occurrence due to many reasons, in respect such as server breakdowns, servers taking emergency
brakes and customers having incomplete information or getting distracted, by grouping them into
various categories depending on (1) the nature of service times at both discrete and continuous
time; (2) the number of servers, by involving single or multiple or infinite server cases; and (3)
regular interruptions or interruptions with retrials.

Queues with orbital search: They were interested in designing retrial queues that reduce the
server(s) idle time and achieve this by the introduction of search of orbital customers immediately
after a service completion (we associate a probability with search) as follows: after completing a



service, the server either immediately picks up a customer from the orbit if any with probability p
or remains idle with probability 1 — p. In this case, as in the classical retrial queue, a competition
takes place in between primary and orbital customers for service. Thus, if the orbital search is
done, a service is followed by another service. Otherwise, if no orbital search is done, a service is
followed by an idle time. Other related works are performed in references: Nila & Sumitha (2020)
and Pazhani Bala Murugan & Vijaykrishnaraj (2019).

In this thesis, our purpose is to investigate a much more generalized of a Markovian model by
the concept of repeated attempts under a linear retrial policy with orbital search and taking into
consideration the interruption service in order to leave the system forever or to rejoin the orbit
for another service.

Indeed, we present a detailed approximation of the stationary distribution for a single server
Markovian queueing model with several parameters, by using the matrix-analytic method. This
method was developed by Neuts (1981), Neuts & Rao (1990) and Latouche & Ramaswami (1999),
for solving Markov chain that are quite complex.

The present investigation includes many features simultaneously such as: (1) Retrials according
to retrial linear policy; (2) Interruption service; (3) Orbital search. We note that all these realistic
assumptions have not been gathered together in the existing literature. The analytical results have
been obtained by using the ()-matrix (infinitesimal generating matrix) technique. Particularly,
we have obtained approximated values of the steady-state distribution and some performance
measures of the model. Moreover, some numerical results are presented to demonstrate how the
different parameters of the model influence on the behaviour of the system.

Most importantly, our study has two main objectives. The first one is to link between the cor-
responding retrial queue with interruption service under several retrial policy (according to a
constant retrial policy, classical retrial policy or linear retrial policy) and the classical queue.
That is why our model can be considered as a generalized version of many existing queueing
models associated with many practical situations. The second objective is to introduce orbital
search in retrial queueing models which allows minimizing the idle time of the server. Whereat:
if the holding costs and cost of using the search of customers will be introduced, the obtained
results can be used for the optimal tuning of the parameters of the search mechanism.

The rest of this thesis is organized as follows: Chapter 1 highlights some advanced Queueing
Systems like: networks queues , queuing system with feedback, retrial queues (without service
interruption) and retrial queues with orbital search, by offering a theoretical framework that pro-
vides definitions, descriptions, examples and specific bibliographical notes to clarify the meaning
of each one.

The generating functions of different stationary distributions for an M /M /1 retrial queue system
with interrupted service and some special cases are illustrated in Chapter 2. Furthermore, based
on the structure of the infinitesimal generator of the process of the model, we use the Matrix-
analytic method to provide some numerical results to illustrate the impact of different parameters
on the stationary distributions of the model. Likewise, a numerical analysis was performed for



the characteristics of the system.

Chapter 3 is devoted to analyse an M /M /1 queueing system with service interrupted and or-
bital search. Due to the complexity of the analysis of this model, we present the matrix analytic
method, which allows us to obtain an approximation of the limiting probabilities. Some useful
performance measures are computed. These results are supported by numerical examples and
simulations to study the influence of some parameters on the characteristics of the system.

A special cases are given in Chapter 4. It covers the previous model treated in chapter 3 for a
constant retrial policy and a generalisation of the model treated in chapter 2 for a linear retrial

policy.

In closing, we conclude this thesis by presenting a general conclusion and bibliographical re-
marks.



Chapter 1

Advanced Queueing Systems

This chapter is devoted to cover the description part of some advanced queueing systems and to
mention some bibliographical notes used for modelling: Networks queues, queueing system with
feedback, retrial queues (without service interruption) and retrial queues with orbital search, in
order to clarify the meaning and applications thereof.

1.1 Networks Queues

In many of today’s global structures, clients are served at multiple stations in a grid structure,
which is a group of nodes linked by a series of routes. In grid queues (queues of networks), many
servers working in the same installation are referred to as nodes.

Generally, clients can log on to the network at a particular node, move from one node to another
within the network, and log off from a particular node, although not all clients necessarily log
on and off at the same nodes, or follow the same path once they have logged on to the network.
Clients can return to nodes they have already visited, can skip certain nodes altogether, and can
even decide to still be on the network for all time.

The simplest example of a queueing network is very useful in modelling packet-routing computer
networks or networks of manufacturing stations.

We consider some very basic concepts regarding queueing networks, known as Jackson net-
works.

1.1.1 Jackson Network Definition

A Jackson network is a very general form of queueing network. In which there are £ servers,
each with its own (unbounded) queue. Jobs at a server are served in FCFS order. The ith server



has service rate Exp(y;). Each server may receive arrivals from inside and outside the network.
The external arrivals in the ¢th server follow a Poisson flow with rate r;. The routing of jobs is
probabilistic. Specifically, every job that completes at server ¢ will be transferred to server j with
probability P;;, or will exit the system with probability

zout 1_ZP’L]

The response time of a job is defined as the time from which the job arrives to the network until
it leaves the network, including possibly visiting the same server or different servers multiple
times. For each server 7, we denote the total arrival rate into server ¢ by )\;. Where the total
arrival rate into server ¢ is the sum of the outside arrival rate (rate of jobs arriving to server ¢
from outside the network), and the inside arrival rate (rate of jobs arriving to server i from inside
the network):

N\ =1+ Z \; P, (1.1.1)
J
equivalently, we can write
ML= Py)=ri+ Y NP, (1.1.2)
JFi

where (1.1.2) is identical to (1.1.1), except that on both sides we are not including transitions
from server 7 back to server .

Server j

Poisson (rj) —»

Py

Server i Server k

O

Figure 1.1: A simple Jackson network.
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Figure 1.1 shows the general set up of a Jackson network.

1.1.2 Open Jackson Networks

Assuming that in the Markovian node network, each node constitutes a M /M /s queue, having
s; servers at node 7 (: = 1,2, ..., k), and there is no blocking for transitions between the nodes.
Thus, each of these queues forms a M /M /s system with an infinite buffer. Also, the external
arrivals from outside the network at node ¢ follow a Poisson flow with rate \; and service times
at node ¢ are exponential with mean u_ Suppose «;; is the probability that a client who completes
service at node 7, requests service at node j (7 is different from 7) and «;y be the probability that



the client leaves the network after service at node i. Denote ()1, (), ..., Qx how many clients are
in each node, respectively, when ¢ goes towards +o0, and define:

Py = P(Q1 =n1,Q2 =g, ..., Qr = ny). (1.1.3)

It is a common example of a so-called Jackson open network, first analysed by Jackson (1957).
Jackson found for p,, n, . n, of (1.1.3) that:

k
Pning,...np = sz(nz)a (114)
i=1
where
(T
pi(0)Li— Ifr=0,1,2,...,8;;
pi(r) = (22)
pi(0) = Ir=s;,8+1,...
and

Yi = /\z + Z&ji/iji = 1,2, ,]{7
J

By having \; and «;; (i,j = 1,2, ..., k), the ,’s value may be found from (1.1.4). Let 7; be the
rate of effective arrival at node 7 after accounting for traffic from the network’s exterior and the
resting £ — 1 nodes inside it.

Consequently, if p; = ;/p; denotes the effective traffic intensity at any node i (fori = 1,2, ..., k),
pi is less than 1 to obtain the limiting distribution. And p;(0) may be determined via

Z Z an1,n27...,nk =1.

ny ng ng

The distribution structure p;(r) in (1.1.3) looks like the one for the M /M /s; queue with arrival
rate 7y; and service rate y;. This implies that the arrival process at the ith node is Poisson. This
isn’t the case, even if ¢ goes towards oo, because of the feedback from cross-node transitions. In
a queueing series with only feedback transitions, we could use the result of Burke (1956), on the
output process and deduce that if ¢ goes towards oo, the feedback transition generates a Poisson
process. However, if the transition contains the feedback feature, the resulting arrival process
isn’t a Poisson process.

Burke (1976) showed that in a M /M /1 queue with feedback, the efficient waiting times distribu-
tion is a mixture of exponentials. Consequently, from the expression in (1.1.3) that is given as the
limiting distribution product of M /M /s; queueing systems, the only result we can obtain is that
in the limit, Jackson’s network behaves as if it were a series of M /M /s; queues. For a full review
of these properties of queueing networks, we refer the reader to Disney & Kiessler (1987).



Markov network models applied to queueing are also represented as Markov population pro-
cesses. A systematic approach to the analysis of these processes, with particular reference to
their limit distributions, has been provided by Kingman (1969). Kingman’s results verify those
of Jackson, who also generalized his earlier result to include production systems composed of
specialized service centers (see Jackson (1963)), and of Whittle (1967, 1968), who derived limit
distributions for migration processes. See Bhat (1984) for further details. Deriving the limiting
distribution (1.1.3) is complicated, even when there are only 2 nodes in the system, as can be
seen from the following outline. Suppose £ = 2 and s; = s = 1. Using the properties of state
transitions, we can write the state equations as follows:

(A1 + A2)poo = p1iopio + Hatropor,
(A1 + A2 + p1)p1o = Mipoo + pr2c21por + H1op2o,
(A1 + X2 + p2)por = Xapoo + p1Q12p10 + p2ta0Poz;
(AL + Ag + 1 4 p2)prr = Aipor + Aapro + piQaepar + faQaoprz
+ H10Qiepog + 221 Po2,

<>\1 + )‘2 + M1 + NQ)pnﬂLQ == )\1pn1—17n2 + )\2pn17n2—1 + H1A10Pn 41,00
+ 12020Pny no+1 T H1O12Pn+1,ns—1 T H2021Png —1,no+1,
ny,ng > 0. (1.1.5)

Both of 1 and v, are expressed at each node as

Y1 = A1+ ao172;

Y2 = A2 + a1am. (1.1.6)
Then, in (1.1.6), solve for v; and s,
A+ A
yy = 2Lt A20m (1.1.7)
1 — ajpag
Ay + A
gy = L2 A2 (1.1.8)
1 — agpaar
We take p; = % i =1,2. Assume
Py = Cpitp5>. (1.1.9)

It is not easy to check that (1.1.8) is a proper solution of the equilibrium state equation (1.1.5)
satisfying 7, >, Pn,m, = 1. The reader is referred to Gross & Harris (1998) for more details
on such a procedure in the general case, with £ nodes and multiple servers at each node.



1.1.3 Closed Jackson Networks

Assume that \; = 0 and oy = 0 under the assumptions made when defining Jackson’s open
network. Consider () = Zle (i, the total number of clients in the network. We now have a
closed Jackson network which can be used to model a queueing network with a fixed number of
clients circulating in the network. Based on the same considerations as for open networks with
k nodes and the ith node having s; servers (i = 1,2, ...), the limiting distribution p,, n, . ., =

k
P(Q1 = n1, Q2 = na, ..., Qr = ng) may be given as

ko o,
Pi
Primgre = C 1] —— (1.1.10)
1,m2 k 1j[1 al(nl)
where
n;! Forn; < s;,

i\i) = i—si 1.1.11
ai(n:) { 518l 7% Forn; > s, ( )

and p; = L with ~; satisfying the relation

Hi
k
Vi = E Vi
i=1

This formula may be expressed as
k
Hipi = Zﬂjpjaji- (1.1.12)
i=1

In (1.1.10), the constant term C' is determined by > D" ...> " Pnins,..m, = 1. Note that the
expression “product form” is only used for the part of the result that contains ny, ns, ..., ng. In
this case, the constant (' is not factorized as a function of the nodes, as it was in the open lattice.
Solving (1.1.12) to find p;,7 = 1,2, ..., k, we notice that only the k£ — 1 equations are independent
since the total traffic is given.

So, we first set one of the p; to 1.
It is not easy to find C' = C(Q). We have

°z
%

cHQ=lc@rt= > 12 (1.1.13)

. ai(ni)’
ni1+n2+..4np=Q i=1

where the sum extends to all available ways of choosing 1, ns, ..., nj, such that > i = 1*n, = Q.
The number of possibilities is expressed by the combining term (Q + k& — 1Q)) (the equivalent
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combinatorial problem is that of distributing () balls in & cells, which in turn is equivalent to
randomly assigning k — 1 balls from @ + k — 1 positions in a row). Therefore, computing C~1(Q)
as a direct formula from (1.1.13) is only easy for small values of () and k, even with the help of a
computer. One of the first algorithms to systematically calculate G(Q) = C~1(Q) was given by
Buzen (1973). He gives the following definition

fi(ni) = %:L) (1.1.14)
so that .
G(Q) = Z Hfz(nz)
Tinne=Q =1
Consider

gm(n) = > I %) (1.1.15)

nit+ng+-4ng=0Q i=1
and gx(Q) = G(Q)(m = k and n = ). We can express

n

gm(m)=>_1 > ] fH0)

= -1 i=
r=0 St =n—r 1

S ALY LA

m—1 _ =1
S m=n—r

= fal)gma(n—1), n=0,1,2,...Q. (1.1.16)
r=0

Furthermore, ¢1(n) = fi1(n) and ¢,,(0) = 1. A recursive structure for computing G(Q) is given
by (1.1.16), according to an algorithm called the convolution algorithm.

There are many computational algorithms in the literature, some of them enhancements of Buzen'’s
algorithm, to compute G(Q)) and p;(n) (see, for example, Gelenbe & Pujolle (1998)). The reader is
referred to works on modelling the performance of computer networks, such as Sauer & Chandy
(1981), for a discussion of their relative merits. An illustration of the use of recursive problem-
solving can also be found in Gross & Harris (1998).

1.1.4 Cyclic Queues

Consider the special case of a closed network of queues, where

1 Forj=i+1,1<i:<k-—1;
0 Otherwise.
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It is a cyclic queue (see Koenigsberg (1958)), in which the service is provided cyclically by at least
one server. In order to keep things simple, it is assumed that there is only a single server at every
station. Following the same notation like in the previous section, corresponding to (1.1.12), we
have the expressions:

H1p1 = HkpPk,
H2p2 = H1P1,
HkPk = Hk—1Pk—1- (1.1.18)
From these we get
U1
P2 = —pP1,
K2
251
pP3 = —p1,
M3
1
pr = —p1, (1.1.19)
223

By setting p; = 1 and retaining generality. For p,,, 5, n,, We get:

Lo
Prina,..on, = Py T (1120)
VT G(Q) pyt st

Using Buzen'’s algorithm, we obtain G(()) mentioned in (1.1.20).

1.2 Queuing system with feedback

The exposition of the feedback notion can be found on the paper A Queuing Model with Feed-
back” by Takas (1963), who notes that after each service a customer may return to the waiting
room with probability p or may depart permanently with probability ¢ = 1 — p. In the same con-
text, a feedback takes the form of the return of certain calls that were handled for a new service,
as it is mentioned on the paper of Melikov et al (2015).

We can highlight the reasons for feedback after completing service from the following papers:

« By de Vericourt & Zhou (2005), An example is given in a call centre, where customers will
come back later if the initial service is not satisfactory.

12



+ Another reason is exposed by Yom-Tov & Mandelbaum (2014), for the treatment of patients
is monitored in stages by the doctor in the hospital, starting with an initial examination,
then returning later to the check-up after requesting and carrying out tests.

Figure 1.2: A Single-Server Queue with Feedback.
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From figurel.4, a Poisson process with rate \ is assumed for all incoming customers and gets
served by a single server according to a First In First Out discipline (FIFO) infinite in capacity.
Their service times are assumed to be i.i.d. random variables and have an exponential distribution
with parameter f.

An arriving customer starts his/her/its service instantaneously if he/she/it finds the server idle.
After getting service, the customer may decide whether or not to provide feedback, which is
supposed to occur instantly. Thus, a customer may either join the feedback flow with probability
p if he/she/it provides feedback, by joining the end of the original queue (there is no difference
between primary arrivals and feedback customers) or the departure process with probability ¢ =
1 — p and leaves the system forever if he/she/it does not provide feedback.

It is clear that feedback in a M /M /1 system is a special case of the general birth and death model
with the following conditions

A=A, VYn>0;
pn =qu, Yn>landg=1-p.

Let N(t) denote how many clients are in the system at an instant ¢.

The process {N(t),t > 0} has an explicit expression for the stationary distribution of p, =
lim;_, 1, P(N(t) = n) given by
AAL
pn = (1= —)(—)",
au gy

for ﬁ < 1,n > 0, from the theorem 1 by Takas (1963).
To emphasize this idea, we mention a variety of papers dealing with a single server queueing
system to model the customer’s behaviour after the returns for a new service, see the paper of

D’Avignon & Disney (1976),Santhakumaran & Thangaraj (2000), Liu & Whitt (2016), Bouchen-
touf & Guendouzi (2018), Shekhar et al (2019), Bouchentouf et al (2019) and Cherfaoui et al

13



(2020).

Figure 1.3: M /M /1/N feedback queueing system with multiple vacations, balking, reneging and
retention of reneged customers. See Bouchentouf et al (2019).
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The paper by Bouchentouf et al (2020), extended the investigation to a multiserver model. This
feedback model is depicted in figure 1.4.

Figure 1.4: M/M/c/N feedback queue with synchronous multiple vacation policy, balking,
reneging, and retention. See Bouchentouf et al (2020)
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The retrial queues that take into account the feedback were introduced too. As a selection of
the related literature, we mention Lee (2005), Wang & Zhou (2010). It is possible to find in some
models that the orbit (the source of retrial calls) is not formed by newly arrived calls but by
serviced calls, like in the paper authored by Melikov et al (2015), or to find a combination of
retrial phenomenon and classical queue with feedback, we refer to Kalyanaraman (2012), who
deals with a feedback retrial queue with two types of clients, in which both types of clients arrive
in batches of variable sizes.

1.3 Description of retrial queues

To describe models of a new branch of the queueing theory, known as retrial queues (or queues
with returning customers, repeated attempts, etc.), we firstly introduce their characteristics by
the following feature assumption: an arriving unit (as customer, call, message,...) that cannot
get service (due to the finite capacity of the system when he/she/it finds all servers and waiting
positions (if any) occupied, balking when a unit does not join the queue, reneging when a unit
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joins the queue and subsequently decides to leave, or because of his/her impatience, breakdowns
or vacation among servers can also be considered, etc.) Exits area of the service but returns to
the system after a random delay to repeat his/her/its request.

Those units that attempt service later are considered “in orbit”. However, units in orbit can not
notice the status of the servicing facility. Besides, they can only check the status of the server by
‘returning’ to the service facility and Retrial is related to such an action.

Units go back and forth from the orbit to the service facility until either service is received (in
this case, each orbiting unit is treated the same as a primary unit (a new arriving unit)), or they
abandon the system.

Above and beyond, it should be noted that the capacity O of the orbit can be either infinite or
finite. In the case of finite O, if the orbit is full, any arriving unit to the orbit will be rejected (will
be forced to leave the system forever).

As it’s shown in Figure 1.5, which illustrates that Retrial queues stand for a type of networks
with re-servicing after blocking. Whereat these networks contain 2 nodes: the main node, where
blocking is possible, together with a delay node for repeated attempts.

Figure 1.5: General Structure of a Retrial Queue.
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For a bibliography, we refer to the book by Artalejo & Gomez-Corral (2008) and to the book by
Donald Gross et al (2008).

1.3.1 Examples

Retrial queues have been widely used to model many problems in telephone switching systems,
telecommunication networks, computer networks and computer systems. The following are just
a few examples which explain this general description in more details.

Telephone systems: Everybody knows from his/her own experience that a caller who receives
a busy signal will keep repeating the call until it is connected. As a result, the flow of calls
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circulating in a telephone network consists of two parts: the flow of primary calls, which
reflects the real wishes of the telephone subscribers, and the flow of repeated calls, which
is the consequence of the lack of success of previous attempts.

Retail shopping queue: In a shop a customer who finds that a queue is too long may wish
to do something else and return later on with the hope that the queue dissolves. Similar
behaviour may demonstrate some impatient customers who entered the waiting line but
then discovered that the residual waiting time is too long.

Random access protocols in digital communication networks: Consider acommunication
line with slotted time which is shared by several stations. Further, the duration of the slot
equals the transmission time of a single packet of data. If two or more stations are trans-
mitting packets simultaneously then a collision takes places, i.e. all packets are destroyed
and must be retransmitted. If the stations involved in the conflict would try to retransmit
destroyed packets in the nearest slot, then a collision occurs with certainty.

To avoid this, each station transmits, independently of other stations, the packet with probabil-
ity p and delays actions until the next slot with probability 1 — p, or equivalently, each station
introduces a random delay before next attempt to transmit the packet.

1.3.2 Notation

In Figure 1.6, we expressed the retrial queueing models described above using the extended no-
tation of Kendall (1953).

Figure 1.6: Notation.

Stands for the loss model,
which canbe described
Describ&:the service time distribution Is the number of waiting positions as a series

Ve
A /B s /m/O/ H

Denotmthe number of servers Isthe capacity of the orbit
inthe system

Describes
the inter—. arrrval time distribution

Note that the retrial time is not described in the notation.

_ 1, Inano-loss system (NL), k> 0;
7l a<1, Ina geometric loss system (GL), & > 0.

When m, O, or H is omitted from the notation, we assume m = s, O = coand H = NL
(No-Loss).
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1.3.3 M/M/1 retrial queue

In this model, customers arrive at a single server queue according to a Poisson process with rate \.
Service times are exponential with mean i Any arriving customer, upon finding the server busy,
enters the orbit and remains there for an exponentially distributed period of time with mean %
All inter arrival times (between primary arrivals), service times and orbit times are independent.
Customers repeat service attempts until the server is available. In this model, we assume that no
customers leave the system due to impatience.

i=Number ] _Bssz;er : @ . @ . @4
o N NG
IR Rt

0 1 2 3

z

»n = Number in Orbit

Figure 1.7: State Transition Rates For Retrial Queue.

Let Ng(t) denote how many clients are in the system (once there is 1 server, Ng(t) € {0,1}) and
Ny(t) denotes how many clients are in orbit at an instant ¢t. Then, {Ng(t), No(t)} is a CTMC,
with state space {i,n}, whereati € {0,1} and n € {0,1,2,...}. The total number of customers
in the system is N (t) = Ng(t) + Ny(t). Figure 4.2 shows the rate transitions between states. Let
P, ,, be the fraction of time that the system is in state {7, n}. Then, the rate balance equations
are

(A4 17)pon = pp1m; (1.3.1)
A+ )p1n = Ao + (0 + 1)¥Pomr1 + AP1n1; (1.3.2)
(A4 1)pro = Ao + YPo,1- (1.3.3)

We obtain steady-state solutions for this system using generating functions. Define the following
partial generating functions:

Po(z) = Z 2"pon, Pi(2) = Z 2" "1
n=0 n=0

Multiply (1.3.1) by 2™ and sum over n > 0:

> A+ nN)ponz" =Y ppraz",
n=0 n=0
)‘Zpo,nzn + ")/ano,nzn = szl,n2n7 (134)
n=0 n=0 n=0
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this can be rewritten as:
APy (2) + vz P5(2) = pPyi(2). (1.3.5)

Similarly, multiply (1.3.2) by 2", sum over n > 1, and add (1.3.4):
A+ 1) Pi(z) = APy(2) + vPy(2) + AzPi(2), (1.3.6)
solving for P;(z) in (1.3.5) and substituting into (1.3.6) gives

Ap

B =000

PO(Z)u (137)

where p = % This is a separable differential equation, which we can write as follows:

Pi(z A
Integrating with respect to 2 gives
Py(z)=C(1— pz)_%. (1.3.9)
Now, P;(z) can be found by plugging Fy(z) into (1.3.5):
Pi(z) =Cp(1— pz)_%_l. (1.3.10)
The constant C' is found from the normalizing condition Py(1) + P(1) = 1:
C=(1-pz)"th (1.3.11)
By substituting this into (1.3.9) and (1.3.10), we get:
RO = =P o
P(z) = p(i=5)"

To obtain the steady-state probabilities, we expand Py(z) and P;(z) in a power series using the

binomial formula
0 m 0 Zn n—1
(1+2) :Z(n)z :Zﬁ (m —1),

n=0

then, rearranging terms gives

(1.3.13)




We construct the generating function for the number of customers that are in the orbit:

P(z) =) 2"(pon +p1n) = Po(2) + Pi(2).

Let Lo be the average number of orbiting clients. Then L, = P’(1). Hence it can be shown

that )
P % M‘*"Y.

L, =
I—p Y

For a bibliography of retrial queues, see Falin & Templeton (1997) and Artalejo (1999).

1.4 Retrial queues with orbital search

Our objective in this section is to cover the description part for retrial queues with orbital search
from the thesis of Shortle et al (2018). They investigated a single server queue with a linear
retrial policy, where the server can go in search of customers immediately after each service
completion with a known probability. They also obtained the necessary and sufficient condition
for the ergodicity of M /G/1 and M /M /1 retrial queues with orbital search.

1.4.1 Description of the main model of M /G/1 type

Consider a single server queueing system in which customers arrive in a Poisson process with
rate \. These customers are identified as primary calls.

If the server is free at the time of a primary call arrival, the arriving call begins to be served
immediately and leaves the system after service completion. Otherwise, if the server is busy, the
arriving customer leaves the service area and joins the orbit. The interval between two successive
repeated attempts is exponentially distributed with rate o/(1 — d¢;) + j6 (the linear retrial policy),
where ¢dy; denotes Kronecker function and j is the number of customers in orbit. The service
times are independent with distribution function B(z)(B(0) = 0).

Let 3(s) = [~ exp~** dB(x) be the Laplace-Stieltjes transform of B(x),5; = (—1)*3%*)(0) be
the kth moment of the service time about the origin, p = A3, the system load due to primary

arrivals, h(r) = 113/5(2:) be the instantaneous service intensity given that the elapsed service

time is equal to z, k(z) = (B(A — Az). It can be shown that k(z) = > | K,,2", where k, =

I ()‘nﬁ exp *® dB(z).

Let (,, be the time at which the nth service completion occurs. Immediately after this, the server
goes for a search of customers in the orbit with a probability p;(p, = 0) which depends on the
number of customers j in orbit. Otherwise, the server remains free with probability ¢; = 1 — p;
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. In the latter case the event to follow depends on the competition between a primary arrival of
rate A and the flow of repeated attempts of rate a(1 — d¢;) + j6. The search time is assumed to
be negligible.

The flow of primary arrivals, the intervals between repeated attempts, and service times are as-
sumed to be mutually independent.

Let N(t) denote how many clients are in orbit and C'(¢) denote the state of the server at time t.
We have C'(t) equal to 1 or 0 according to whether the server is busy or free. Note that the state
space of the process x(t) = {C(t), N(t)} is S = {0,1} x N. The transitions among states are
shown in Illustration 1 for the case of exponential service times with rate p.

Fi

4 N—
) e e ‘7@
4 l ‘\ qulk . ,1\ lqzh{x] AX q”hx N NJ u
R Sy Bl

Figure 1.8: State space and transitions.

1.4.2 M/M/1 Retrial queues with orbital search

We consider B(t) = 1 — exp .t > 0, the process X(¢) becomes an irreducible continuous-
time Markov chain and the principal characteristics can be easily expressed in hypergeometric
functions.

The set of statistical equilibrium equations for the probabilities Fy; and P; is
A+ a(l = by) + 70} Po; = qjuPry, Vi >0; (1.4.1)
(A+p) Py = AP+ ARy + [a+ (5 + 1)1 Po 1 + ppj Prja, Vi 2 0. (1.4.2)
The equation (1.4.1) can be rewritten as

A+ a(l — 6y;) + j6

Pi=
7 qip

Py, Vj>0. (1.4.3)

Eliminating the probabilities F}; from the equation (1.4.2), by substituting (1.4.3) into (1.4.2), we
get:

A+ a(l—6by,) + 46 A+ a(l—=d;1)+(j—1)0

(X + ) Poj1+ AP+ [a+ (54 1)0) Py jia

PO,j:/\

qjH qj—1H
At a(l —=0dp41)+(j+1)0 ,
+ ppj1 ( o) T U +1) Poji1; Vi 2>1, (1.4.4)
qj+1 14
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which implies that

pgj—1g;(a+ (5 + Dp+ Apjr1) Pojr — Aj1@ (A + o+ jp) Poj =
111G+ (a0 + Jp+ Apj) Poj — Aqjqii (A + a(l = o j-1) + (5 — 1)0) Poj—1, Vj > 1. (14.5)

Now from (1.4.5), we have:

-1+ (a+ ju+Ap;) Poj — Agigj1(A+a(l—doj-1) +(j —1)0) Foj—1 = 0, Vj > 1; (1.4.6)

i1+ (e + jp+Apj) Poj = Aqgjgjra( A+ a(l — g 1) + (J — 1)8) Py j—1, Vj>1;
)‘Qij+1(>‘ + Oé(l — 500',1) + (] — 1)9)

Py, = _ Pyi:_1, Vj>1.
o 1qj—1qj41(a + ju+ Ap)) e
Thus Ag;i (A 1= —1)0
Py = gi(A + ol - O,j.fl> +( -1 )PO,j—la Vi > 1. (1.4.7)
pgj—1(o + jp + Apj)
Recursively, we find that F ; depends on F  as follows:
7j—1
A (1—-0 ko
Py = Poogsp? H +all = ) + Vi> 1 (1.4.8)

o PeriA F ot (k+ 1)’ B

The probabilities P, ; can be also obtained directly from the equation (1.4.1) by

J

. A4 o+ kO
Pj=PRop [[ S V>0 1.4.9
1,5 0,0P] kilpk/\‘l‘a"‘kﬂ J = ( )
and
- j
. Ao+ ko

Pl = 11 a4 1.4.10
0 =20 (+A+a(1— )+ 46 Hpk)\—l-oz—i-ku ( )

=0
Then, in order to get closed-form expressions for the formulas (1.4.8), (1.4.9) and (1.4.10), they
assumed the case of constant search, for p; = p,p € [0,1],j > 1.

Let F be the hyper-geometric series given by

o0

F(a,b,;c;z)_z%7

k=0

where (), is the Pochhammer symbol defined by

() = 1, itk =0;
EZY wle+ ). (x4 k—1), ifk>1.
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Proposition 1.1 Let us assume that {x(t);t > 0} is positive recurrent, then the limiting probabil-
ities { P, j } (i j)es are given by

(L—pA ; (52,

Poj = Poo P , Viz 1
A« (p ; + 1)j
o G
Prj = Poop" ' 54 , V> 0;
1, 0,0 (p)\;—a’ + 1)]
A« A+«
Pod=F(1,22 =+ 1,222 4 15p).
’ 0 0
We also introduce the partial generating functions
Pi(z) =) # Py i€ {01}, ]2 <1,
=0

Proposition 1.2 The partial generating functions P;(z),0 < i < 1, are given by

Ao DA+«

Py(z) = Poo(l — pz)F(1, 7 + 1; 7 + 1; p2);
A+ A+

Note also that
M} = ipm- and M}, = ij(j —1)..(j—k+1)P;, forie {0,1}, k>1,
=0 j=Fk
where M; is the partial factorial moments.
Proposition 1.3 The partial factorial moments M}, fori € {0,1} and k > 0, are given by
Mg =1—p;
(L=pA 5 (5%

Ao PA+

M? = Py k! F(k+1, + k; +k+1;p),k>1;
L S WP (P ), ( 0 0 )
My = p;

Ao

41 A+« A+«
M} = Py k! ’“+1<9—Fk 1 k+1; k+1;p),k>1.
» = Pook!p (”A;a+1)k(+’9++’ g thk+Lp) k2

In particular, the expressions corresponding to the classical retrial policy (for « = 0 and 6 > 0)
are given by
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Corollary 1.1 The limiting probabilities are given by

- (5)s .
P() —P070(1—p)p] ,Vj>]_,
’ (B +1);
(G+1); .
Plj:PO,Op]+1(%+1]j;vj ZOJ
A A
Pog = F(L5 + 152 4+ 15p)

Corollary 1.2 The partial generating functions are given by

A A
Po(z) = Poo(l — p2)F(1, 7 +1 % +1; p2);
A A
Pi(2) = PyppF (1, = + 1; pA +1; pz).

0 0

Corollary 1.3 The partial factorial moments are given by

My =1-p;
MO = Pyokl(1 —p)pkﬁmm LA P2 i)k 1
| (5 + 1) 00
My = p;
(34 1) pA

A
Flk+1,-+k+1;

My = Pook!p™!
k 0,070 (%/\-i—l)k 0

7 +k+1;p),k> 1.

Moreover, the expressions corresponding to the constant retrial policy (for § = 0 and @ > 0) are
given by

Corollary 1.4 The limiting probabilities are given by

(L=p)A ;.
Py, = PFPg———p.Vj > 1;
0,j 0,0)\+a57]_7
Py = ByopB’,Vj = 0;

Corollary 1.5 The partial generating functions are given by

_(-p)(-8)
_p(d =5
A =55
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Corollary 1.6 The partial factorial moments are given by

Mg =1-p;
1—p)A, B
Mozk!( k>
k )\—f—Oé (1_5)7 - 4
My = p;
Mlzk!p(i)k k> 1.
k 1_/8 Y -

Remark 1.1 The performance characteristics of the standard M /M /1 queue and the M /M /1 re-
trial queue can be deduced by fixing the value of the parameter p;, for both choices p; = 1 and
p; =0,V > 1.
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Chapter 2

M/M/1 Queue With Retrials After
Service Interruption Option Selected By
Customer

In this chapter, we present the framework we will use for modelling a M /M /1 queue system
with interrupted service by the customer being served, where the access to the orbit is done after
a first pass through the server. We consider a single server, whose orbit and queue have infinite
capacity , according to the constant retrial policy. Our interest is in the customers that they can
decide between leave the system forever or join the orbit for coming back again to the server
after a random time in order to get another service.

Such model is applicable to many practical situations where the customer can make a decision to
join orbit with probability p; if he interrupted his first service, waiting for completing; or to left
the system immediately after complaining with probability (1 — p;). We assume that the server
after the completion of customers’ service and being idle, there is a competition between primary
and orbital customers (which are waiting in the queue or in the orbit) for getting into the server
for the next service.

The results of our model can be applied to improve the management of several systems in many
fields, so to help take an optimal control policy to minimize the expected discounted cost. In
concrete terms, we were inspired by the following situations:

« An employee who gets temporary leave because of maternity/paternity leave, medical
leave, or ... When at the end of it, he/she has to resume his/her duties under the con-
tract. Thus, he/she returns to the server. There is also the case, in which he/she goes away
forever (due to retirement, or after a lay-off, ...).

« The sale and purchase in instalments guarantee the return of the customer to complete the
remaining instalments.

« A site for student assignments that is only accessible once for students, but teachers have
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unlimited access, so they can view and return as many times as they want.

2.1 Model description

In this model, we consider a M /M /1 queue with retrials after the service interruption option
selected by the client under a constant retrial policy. We consider a single server retrial queueing
system; whose orbit and queue have infinite capacity which primary clients arrive according to a
Poisson process with rate A > 0. The service times are independent and exponentially distributed
with parameter f.

The following rules govern the dynamic of the customers:

« If an arriving client finds the server idle, he immediately begins his service. Otherwise, an
arriving client who finds the server busy joins the queue line in the service area according
to FCFS discipline (first come, first served).

« We assume that the client can interrupt the service and go on vacations or take a break,
where the break choice can be only applied to the primary customer who started his service
and decided to leave the service space before completing its. Thus, the client may leave the
system forever with probability (1 — p;) after completing his first service, or joins the orbit
with probability p; (in case that the client wants to take a break). After a period of time,
the orbiting client coming back to the server.

« We assume that the clients only have access to the orbit after an initial service.

« Customers in service can join the orbit and spend an amount of time. If and only if they
decided to come back to the service and the queue line was empty, an orbiting customer
attempts to access the server directly at random intervals of time (without rejoining the
queue line in a service area), according to the constant retrial policy with rate 6, where the
inter-retrials time are exponentially distributed with rate # > 0. However, these orbiting
customers upon the completion of their break can regain access to the server to resume
service; as the service is exponentially distributed and orbiting customers resume their
service from the beginning. Such retrial policy is called constant retrial; see Wang et al
(2017).

« It should be denoted that the server after the completion of customer’s service and being
idle, there is competition between the primary and orbital customers for getting into the
server for the next service if and only if the queue line is empty.

« All the random variables defined above are mutually independent.
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2.2 Stochastic analysis

We have come to analyse a M /M /1 retrial queue with customers’ break choice and constant
retrial policy. We consider a single server retrial queueing system; whose orbit and queue have
infinite capacity which primary customers arrive according to a Poisson process with rate A > 0.
The service times are independent and exponentially distributed with parameter ;.. We have also
the global traffic intensity given by

= + o — + = .
Pl = 0= p) " w(l—p)  p(l—p)

The system state at time ¢ can be described by the process X () = {C(t), N,(t), N,(t);t > 0},
where C(t) is the state of the server (0 or 1 according as the server is idle or busy) and N, (t)
denotes how many clients are in orbit and N, () denotes how many clients are in the queue line
(excluding any clients that may be in service) at time ¢.

Let N(t) denote how many clients are in the system at an instant ¢ (i.e. in orbit, in queue line and
service). Where N (t) = N,(t) + N,(t) + C(t).

So that the continuous-time stochastic process X (t) = {C(t), N,(t), N,(t);t > 0}, describes the
state of the system with state space {c, 7, j}, where c € {0,1};i € Nand j € N.

Its infinitesimal transition rates q( ; j)(c,m,n) and q(1,i5)(c,m,n) are given by

4(0.0.0)(1.0.0) = A;
4(0.0.5)(1.0.5) = A 5 40.05)(1.05-1) = 0,7 > 1;
4(1.0.5)(0.0.j+1) = Ap1, Vj = 0;
4(1.0.0)(0.0.0) = (1l —p1);
4(1.05)0.0.) = #(1 —p1),Vj > 1;
q(0..0)(1i-1.0) = A5 @(1.0.0)(Li+1.0) = A, Vi > 1;
4(1.0.0)(1.1.0) = A 14(1.0.0)(0.0.1) = Ap1;
q(1.3.0)(0.i.1) = Ap1 3 4(1.4.0)(0.4.0) = M(l —pP—- 1);Vi > 1;
G0.4.5)(Li—15) = A3 q(Lij)(Lit15) = A\, Vi > 1,Vj > 1;
Q(1..5)(0.0541) = AP1 3 Q(1ig)0.4) = (1 —p1),Vi > 1,Vj > 1. (2.1)

Remark 2.1 It is more convenient to split our analysis in two, by considering a special case, i.e. we
limit ourselves to analyse the M /M /1 model with no queue line in the service area (the case where
the queue is empty). Then, considering the main model with the queue line with the orbit.

Special case. When the queue is empty the model becomes without waiting space. Then if an
arriving customer finds the server idle, he immediately begins his service. Otherwise, an
arriving customer who finds the server busy leaves the system without any effect on the
system.
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Figure 2.1: State space and transitions.
Let N(t) denote how many clients are in the system at time ¢. Where N (t) = N,(¢) + C(t). I
the case of exponentially distributed service times process x = {C(t), N,(t);t > 0} isa Markov
process with the state space {0; 1} x N, we define the limiting probabilities that the system is in
an idle or busy period respectively:

To, = lim P(C(t) = 0,No(t) =n),n > 0;
t——+o0

M, = lim P(C(t) =1,No(t) =n),n >0
t——+o00

A eﬂ 1.

1-@+ )\._, ;ul Pq) n+1 D [ u(1—py) +4p,]
— \ '1?71

1—(_A+8L ml mQ 1-[ p(1—py) +Apq]

1p1

A+6) ml m Dl [ u(1-py) +4p,]
,/‘i

1-(2+6) ml o 12 1-[ n(1-py) +4ps]

A+6) #“ 1 p, @Dl [ w(1—py) +2py]

f D
1- 1.0 1—[ p(1—py) + 4
o wl ) [ p(1-py) +ipy]

Figure 2.2: Dynamic diagram queueing system.
From a state (0, n) only transitions into the following states are possible:

« (1,n) with rate A, due to arrival of a primary customer;
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« (1,n — 1) with rate 6, due to arrival of an orbital customer.
Reaching state (0, n) is possible only from states:

« (1,n) with rate (1 — py), due to a service completion in case that the customer leaves the
system forever;

« (1,n — 1) with rate Ap;, due to an interrupted service in case that the customer wants to
take a break and joins to the orbit.

From a state (1,n) only transitions into the following states are possible:

« (0,n) with rate 4(1 — p1), due to a service completion in case that the customer leaves the
system forever;

« (0,n + 1) with rate Ap;, due to an interrupted service in case that the customer wants to
take a break and joins to the orbit.

Reaching state (1, n) is possible from only from states:
« (0,n) with rate A, due to arrival of a primary customer;
+ (0,n + 1) with rate 6, due to arrival of an orbital customer.

The set of statistical equilibrium equations for the probabilities {7 ,,, 71 ,; Vn > 0} is

A0 = (1 — p1)m0; (2.2)
10+ N0 = Ap171n—1 + (1 — p1) T, V0 > 1; (2.3)
[/\p1 + M(l - pl)]ﬂ'lﬂ = 07T0,n+1 + /\7T07n,Vn Z 0. (24)

We have then the following result:

Theorem 2.1 For a M /M/1 retrial queue in the steady state, the joint distribution of server state
C(t) and queue length N,(t), 7, = P{C(t) = i, N,(t) = n} is given by

A - 0 — \po
n — ;L FPo IX ———
and
A 0= )p,

— (= J 7
ﬂ'l:n (epo) X 6(1+pq> X pQ‘

Proof 2.1 The way of solving the equations (2.3) and (2.4) consists of the following.

With the help of equation (2.3), we eliminate probabilities 7 ,, from equation (2.4) and rewrite the
resulting equation as

A

0
[Ap1+p(1—p1)|m1, = m{>\p17ﬁ,n+,u(1—p1)71,n+1}+9+—)\{/\plﬂl,n—1+ﬂ(1—p1)71,n}7 Vn > 1,

[Ap1+u(1=p1)] % [0+, = {9>\p1ﬂ'1,n+9,u/(1_p1)71,n+1}+{)\2p171,n71+)\,u(1_pl)ﬂ-l,n}a Vn > 1;
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9#(1 - p1)7T1,n - /\2p17T1,n—1 = 9#(1 - pl)ﬂl,nﬂ - /\2]?17T1,n, Vn > 1;
which implies that
Ou(l — p1 )i, — Npimi -1 = 0,Vn > 1;

ie.

Ou(l — p1)min = Npimie 1, V0 > 1;

)\2171
n— 5 /4 N n— 7v 2 17
T, Glu(l—pl) X Tin—1, VN

ANpy j A

Tlm = J 0.0, V12 > 0;
= e R ™
A )

Tin = (500)] X pg X To0,Vn 2> 0. (2.5)

By substituting (2.5) into (2.3) and after some rearrangement we get:

)\2}?1 j
= (P Y 0,0 > 0;
T, {Q[L(l—pl)} 700,05, VTV
A .
To,n = (EPO)J 7TO70,\V/77, > 0. (26)

The probability 7y o may be found with the help of the normalizing condition )" . (7o, +71,) = 1,
then we get:
Op(l —p1) = Np1 0= Ap,

Olu(l —p1) + A O(L+p,)

Introducing I1y(z) and I1;(z) the generating functions corresponding to the orbit size defined

by

To,0 =

+o0
[p(z) = Zwom 2" |z < 1;
n=0

+oo
I(z) = Zﬂ'lm 2"zl < 1,
n=0

/\2p1z

Tnli—pD) |=| %poz |< 1 which allows the

and under the necessary and sufficient condition |

stability of the system, we have the following results:

Theorem 2.2 If | 9;\(21”_1;) |< 1, the generating functions corresponding to the orbit size I1(z) and

I1,(2) have the following expressions

1 0 — A\p,
IT = ;
o(2) 1+ pg x 0 — \poz’
0 — Apo
H1<Z) pq p

:l—i-pq X@—Apoz'
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Proposition 2.1 e The fraction of time the server is busy is Pr[the server is busy]= M} =
> n>0 T, this can be found from the generation function, since

A
H1(1) = Zﬂ-l,n = i

WI—p)+ A 1+p,

« The fraction of time the server is idle is Pr[the server is idle]= M = Zj>0 0,05, this can be
found from the generation function, since

To(1) = Zﬁo,n _ M(M(l -p) 1

e L—p)+XA 1+p,

e The generating function for the number of customers in orbit is

A + ,U(l _pl) % 9,&(1 _pl) — )\2p1‘

9

II(z) = 2(mon +m10) = 1o(2) + 111 (2) =
(2) ; (Mo + m10) = o(2) + i (2) G = pr) — \pra TSRS

0= 2p,
0= A\poz

e The generating function for the number of customers in the system is

Az + (1 —py) Ou(l —p1) — Np1

9

Q(2) = TIy(2) + 2111 (2) = 01— p1) — Nz w(l—p1) + A

0= Ap, " 1+ pgz

2.3 Performance measures of the special case

+ The mean number of customers in the system 7 can be derived from

A0+ po)
(1+pg)(0 — Apo)

= Q) = )

« The mean number 71, of customers in orbit is,

A’y )
(1+ pg)(Ou(1 —p1) — N2py’
APo
(1 + pQ>(Q - Apo.

n, =1II(1) =
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+ The mean time spend in orbit W, (i.e. , the mean in orbit until finding the server idle and
beginning service) can be derived from (*) using Litles’s law:

n__ (0+p0)
A (T4 pg) (0 = Apo).

« The average time in system WV, can be similarly derived

W, = T+ 1 p@=p)(0+po) + (14 pg) (6 — Apo)

(1 —p1) (1 —p1)(1+ pg)(0 — Apy)
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Figure 2.3: 1, by varying 6 & (i, p) € {(1,0.25);(2,0.25);(3,0.25) }.
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Figure 2.4: n, by varying 6 & (p, p) € {(1,0.50); (2, 0.50); (3,0.50)}.
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Figure 2.5: n, by varying 6 & (u,p) € {(1,0.75);(2,0.75); (3,0.75)}.
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Figure 2.6: n by varying 0 & (i, p) € {(1,0.25);(2,0.25);(3,0.25)}.
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Figure 2.8: i by varying 6 & (i, p) € {(1,0.75);(2,0.75); (3,0.75) }.

The main model. The set of statistical equilibrium equations for the probabilities { o ; ;, 1 ; ;; Vi >

0;Vj > 0}, under the ergodicity condition p = % < 1, have the following expressions
ATo.0,0 = p(1 — p1)m100; (2.7)

AT0i0 = (1 — p1)mii0, Vi > 1 (2.8)

AN+ Ap 4+ p(1 = p1)}mio = Moo + AToig,0, Vi > 1 (2.9)
A+ 0]mo05 = Ap1m10,5-1 + (1 — p1)mio,, Vi > 1 (2.10)

{AN+Ap1 4+ p(1 = p1) o = Mmooy + Ao, + 0mo0 541, Vi > 0; (2.11)
AT, = A1 -1 + (1 — po)miy, Vi > 1,V5 > 1; (2.12)

{N+Ap1 + w1 = p1) by = AMoigr,j + Aoy, Vi > 1,V5 > 1; (2.13)

with the normalization equation

ZZWWJ + ZZWLM =1.

i>0 j>0 i>0 j>0

Theorem 2.3 The generating functions of the Markov chain {C(t), N,(t), N,(t);t > 0} have the

34



following expressions

Op(l —p1) 0
11 = - .
00(2) Opu(l — p1) — )\QPIZWO,O,O 0 — )\pozﬂo,o,oy
ON) Op
I = = q :
10(2) Ou(l —p1) — )\gplzﬂo,o,o 0 _ )\pozﬁo,o,o,
OC(IL’, Z) - f 0
11 — p(1—p1) .
) S T Tl - ) T g ™0
where oz, 2) = m(/\zfgﬁxg)_pqz and
Bz, z) 0 0
11 = - ) (—
o, 2) (po(l —2) + pg(l — ) /\)(0 - )\poz>7ro’0’07

where 3(x, z) = HLoZ (o, 2) —

0
Pq u(l—p1) )

Proof 2.2 We introduce the following partial generating functions:

o 0(2 Zﬂoog 104 (2 Zﬁo] 2] <1

(= ZTFO,]Z 1 (2 Zm”z |z| <1, Vi >0.

7=0

Further, we define the generating functions for 11, ;(2) and I1, ;(2), respectively, with respect to the
queue line size.

+00
z):ZHO,i( z' y(x, 2) = ZH“ Yol |zl <1, |2] < 1

From (2.7) and (2.8), we obtain:
+oo ' +o0 '
Z )\7T0,i,0 = Zﬂ(l - pl)'/Tl,i,O '
i=0 i=0
+oo ‘ +o0o ‘
/\Zﬂo,i,o T = M(l - pl) Zm,w "
i=0 i=0

Ao o(7) = p(1 — p1)I p(2);
A

Iio(z) = a0 —pr) _pl)Ho,O(iU),

I o(z) = palloo(z).
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By substituting my ; o from (2.8) into equation (2.9), we obtain:

{AN+Ap1 + p(1 = p1) a0 = AT1i—1,0 + AT ,iv1,0, Vi > 1
A A
70,i,0 — )\—7?0,2'71,0 + >\7To,1; 1,07W > 1;
p(1—p1) (1 —p1) i
{N 4+ N1 4+ (1 = p1) o0 = Nmoi-1,0 + Mu(1 — p1)moit1.0, Vi > 1 (2.14)

multiplying (2.14) by 2 and summing over i, we get:
Z{)‘Z + Np1 + Al — p1) o0’ = Z Nmo 1,02’ + Z AMi(1 = p1) o ip102, Vi > 1;

XN+ Apy+u(l—p)}

121 i>1 i>1
{2+ N2p1+ A(1 = p1)} o o(2) — mo,00] = NaTloo(a) + M[HO,O(IE) — 0,00 — TTo,1,0};
{N22 4+ N2prx + Aop(1 — p1) Yo o(x) —mo00] = N2y o(z) + Au(1 — p1) [ o(z) — T0,00 — TT0,1,0);
(N2 + Npra + Aap(1 — p1) Hlpo(x) — {N2 + Npix + Aep(1 - p1)}mo0,0 = /\2$2H0,0($)
+Au(1 = p)oo(x) — Apu(1 — p1)mo00 — Azp(l — p1)mo,1,0;
(N2 + Npiz + dzp(l —pr) — 22 — (1 — 1)) Hlgo(x) = —Azp(l — pl)ﬁ 0.0.0

{2z + Mprr — (1 —pp)(1 — ) }70,0,0
{(1=2) [Nz = Ap(1 = po)] + Npra}g () = {Nprz — A1 — p1) (1 — ) }70,0,0;

Aprz — (1 —py)(1 — )
II = :
00(®) (1 —x) e —p(l —p1)] + )\plxﬂo’o’o’
o r— (11—
HO,O(-'L') = P ( ) 70,0,0-

pot — (1= )(1 — pya)
So,

111 o(z) =pglloo(2);
_ pglpor — (1 — )]
() = == e

)7To,0,0- (2.15)

Multiply equation (2.10) by 27 and sum over j, we get:

+oo
Z[)\ + H]WQOJZJ Z)\plﬂ'l 0,j— 12‘7 + Z,u 1 _pl)ﬂ-l OJZ
Jj=1 j=1 7=1

A+ 0][Ilp0(2) — mo,00] = Ap12Ii(2) + (1 — 1) [ 0(2) — 710,0];
A+ 0o o(2) = [Ap1z + p(1 — p1)]T o(2);
Ap1z + p(l —p1)

Ioo(z) = N0 10(2);
A+0 Pa u(lfm)
I1 = I1 = ———II : 2.16
1,0(2) vz + (1 — p1) 0,0(2) oz + 1 00(2) (2.16)
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Multiply equation (2.11) by 27 and sum over j, we get:

+o0 +oo +00 +oo
Z{)\ -+ )\pl -+ /L(]. — pl)}ﬂ'Lo’ij = Z )\71'070,]'2]‘ + Z >\7T071’j2j —+ Z 97T0’0’j+12j;
j=0 j=0 j=0 j=0
400 ' 400 ‘ 400 ‘ +o0 ‘
{A+Ap1 + p(l —p1)} Z T2 = A Z T0,0,52" + A Z mo,1,52” + 0 Z 70,0,j+1%”;
Jj=0 Jj=0 Jj=0 j=0

0
{A+ Ap1+ p(l = p1)}mio(z) = Amoo(2) + Amoa(2) + ZWO,O(Z);
{)\Z + /\plz + Z,LL(l — p1>}H170(2) = [)\Z -+ 09]1_[070(2) + )\ZH()J(Z) — 97’(’0’070;

)\plz + /L(l — pl)
A+0

Az + Aprz + 21— pr) HA + 0L o(2) = [Az + 0)[Ap1z + p(1 — p1)]Tlo(2) + Az{ A + 0o 1 (2); T 0(2)

Az(A+0) + (1 — 2)[NPprz — Ou(l — p1)]

{Az + Aprz + zp(1 — p1) Hio(2) = [Az + 0]

T o(2)] + A=Ilp 1 (2);

II = I )
0a(2) N+ 0} ol2);
Az(A+0) + (1 — 2)[Np1z — Op(L — p1)]
Ip1(2) = I o(2);
1) XeDpre — i1 — o) ol
(6 — Apoz)(1 — z) — (A +6)pg2
II = II . 2.17
0.1(2) 0= pone 00(2) (2.17)
Now, multiply equation (2.12) by 27 and sum over j, we get:
+0c0 ' 400 ' +0c0 ‘
Z /\ﬂ-oﬂ,jz] = Z )\plﬂ-l,z’,j—lzj + Z M(l — p1>7T17i,jZJ,VZ' > 1;
j=1 j=1 j=1
AMoi(2) = mo.0] = Ap12Ilii(2) + (1 — po)[Ilyi(2) — w10, Vi > 1
after using equation (2.8), we get:
)\Ho’i(Z') = )\pleLi(z) -+ ,Lt(l — pl)HLl’(Z),Vi > 1,
plloi(2) = (poz + 1)1 (%), Vi > 1; (2.18)

multiply equation (2.18) by ' and sum over i, we get :

+00 +oo
D palloi(2)a' = (poz + DT 4(2)a;
=1 =1

pqlllo(z, 2) — oo(2)] = (poz + 1)1 (z, 2) — M1 0(2)];
pllo(z,2) = (poz + DI (, 2) + palloo(2) — (poz + 1110 (2);
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by substituting (2.16) and after some rearrangement we get:

Pat i
pllo(z, 2) = (poz + DILi(z, 2) + pllop(z) — (poz + 1)WHO’O(Z);
0
quO(x, Z) = (pOZ + ].)Hl(.T, Z) - mﬂop(Z). (219)
Multiply equation (2.13) by 27 and sum over j, we get:

+00 A +00 ‘ +00 A
Z{)\ + )\pl + ,u(l — pl)}mmzj = Z )\7?'07%'_;,_17]'2’] + Z )\7T17i_17jZJ,Vi Z 1;
i=1 i=1 i=1

{>\ + Ap1 + ,U(l - pl)}[Hl,i<Z) - 7T1,¢,0] = )\[HO,Z'Jrl(Z) - 7To,z'+1,0] + )\[H1,i71(2) - 7T1,¢71,0],W > 1;
using equation (2.9), we get:

A+ Ap1 4 p(1 = po) HIi(2) = Mg (2) + MLy -q(2), Vi > 1,
{p+ 1HIi(2) = po[lloi1(2) + i1 (2)], Vi > 1 (2.20)

multiply equation (2.20) by x' and sum over i, we get:

+oo +00 +oo
D Ap+ BT(2)2 = pallosia (2)2' + > pglli i (2);
=1 =1 =1

{p + 132, 2) = I 0(2)] = py[llo(2, 2) = To0(2)] + 2pglhi (7, 2);
{p+1—zp,}1Li(x, 2) = pdlo(z, 2) — plloo(2) + {p + 1} 0(2); (2.21)

where

(A+0)

(p+ DI o(2) = plloo(z) = (p+ 1) Ap1z + p(1 = pr)

Io,0(2) — pelloo(2);

by substituting (2.16) and after some rearrangement we get:

(A0 (p+1)
CApiz + (1l —pr)
A+0)(p+1) = pg[Ap1z + p(l — p1)]

= Iy o(2);
Ap1z + (1 — pr) o0l2)

— pglllo0(2);

then,
[(P + 1) - pqx]Hl(xv z) = quO(xa Z) + Oz(:C, Z)H0,0(2)3

(A+0)(p+1)—pq[Ap12+p(1—p1)]
Ap1z+p(1—p1) )

where a(z, z) =
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By substituting (2.19) into (2.21), we get:

[(p+1) = pgz |l (2, 2) = pllo(x, 2) + a(x, 2)p(2);

0
[(p+ 1) = pgx|lli(z, 2) = (poz + DIi(z, 2) — mﬂo,o(z) + a(w, 2)oo(2);

0

([(p+1) = pg] = (poz + 1)) (2, 2) = [av(, 2) — m]ﬂo,o(z)é
0

(1= 2)po + (1 = 2)p T (7, 2) = [a(z, 2) — m]no,0(2)§

B alz, z) — ﬁ .

D) = g (=g,

also, .
I (z,2) = o2 ~ o X ’ o,0,0

(L= )0+ (L= 2)p, 6= Apo2

By substituting 11, (x, z) into (2.19), we get:

0
il - DI T Tly(2):
Pq 0(.%,2’) <p02+ ) 1(1’, Z) ,u(l—]h) 070(Z>7
o(z, 2) = (poz + 1) x @) ~ O eeo——2m (2)
Patiokt =)= e (L—2)po+ (L—2)p, 0 Apoz " ul—py) O
oz, 2) = 15t 0 0 0
I = (poz+1 pllopy) o 0.0 — I
pllo(x, 2) = (poz + 1) X (= 2)py+ (1 — 2)pg oz Moz 000 T A Xz Nz 000
pllo(z, 2) = {(Poz rhxlate ) - “(lfpl)] - / }x 0 Ho,0,03
R (1—2)po+ (1 = 2)pq p(l=pi)” = 0 =Apz
2t x fa(z, 2) = paty] 6 0
I — Pa ’ p(l—p)l O T .
o7, 2) =1 (1 —2)po+ (1 —2)pg /\} g Apoz 00
Bz, z) 0 0
II = _ = I
ol, 2) {(1 —x)po + (1 — 2)pq /\} /RN oz 00
where B(z, z) = —pOZqH X [a(x, z) — —u(lﬁm)]'

Remark There is no obvious guess for the limiting distribution, by do not provide a closed-form
symbolic solution, in terms of \’s, 1’s, #’s, and p;’s, but rather we can only solve an instance
of the chain (where the rates are all numbers) by using The matrix analytic methods as
approximate numerical methods for solving Markov chain that are quite complex.
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2.4 The Matrix-Analytic Method

The matrix analytic methods are developed by Neuts & Rao (1990) and Latouche & Ramaswami
(1999) as approximate numerical methods for solving Markov chains that are quite complex.
There is no obvious guess for the stationary distribution, by do not provide a closed-form sym-
bolic solution, but rather we can only solve an instance of the chain (where the rates are all
numbers).

To illustrate the method, it is useful to start by rewriting the balance equations in terms of a
“generator matrix”, Q. This is a matrix such that

7.Q=0 where7.1=1. ()

Here Tisa 2 x (by + 1) x (bs 4+ 1) row vector of all the limiting distribution probabilities
™ 2(700077T100, 0015 71015 --+5 710055 71055 770105 771105 770115 71115 «-+5 TTO155 TT11g5 -+ - 7TOij77Tlij)7

V0 < i < b,0 < j < by and 1 is an appropriately sized vector of 1s, and 0 denotes a vector with
an infinite number of null entries.

Partitioning the limiting probability vector 7 as @ = (7o, 71, ...7T;), for 0 < i < by, where 7; =
(T0i0> T1405 T0i1, T4l s -+ Toij»> T145)> for 0 < j < by,

By ordering the statesas S = {(0,0,0), (1,0,0), ..., (0,0, 5), (1,0, 7), (0, 1,0), (1, 1,0), ..., (0, 1, ),
(1,1,5),...,(0,4,0),(1,4,0),...,(0,4,7), (1,4, j) }, we can express the infinitesimal generator Q of
the process {C(t), N,(t), N,(t);t > 0} in the following matrix block form:

Ly F

B L F

Q= B L F
where

A A 0 0 0 00 ...0
p(l—=p1) C Apy 0 0 00 ...0
0 6 —(A+6) A 0 00 ...0
Lo = 0 0 ul—p) C  Apr 0 0 ... 0
0 0 0 6 —(A+6) A 0 ... 0
A0 0 0 0 00 ...0
p(l—=p1) C g 0 0 00 ...0
0 0 —(A+6) 0 0 00 ...0
L= 0 0 ul—p) C  Apr 0 0 ... 0
0 0 0 0 —(A+6) 0 0 ... 0
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where C'= —[\ + Apy + p(1 — p1)].

O O OO x> O
o O OO oo
S O >0 O O
o O OO oo
> O O O O O
O O OO oo

O OO OO
S OO D
S OO OO
O O > O O
S OO OO
> O O O O
O O O O O

By using the notation 7; = (700, T1i0; T0i1, T1il, -5 T0ijs T145); for 0 < j < b, we rewrite the

7 . Q = 0 for the probabilities as matrix equations:

7?0.[/04-7?1.8: 6,
. F+@ . L+7.B= 0,
7 .F+7. L+7s.B= 0,
T . F4+7 . L+#. .B= 0, Vi>1.

The idea behind matrix-analytic methods is that we recursively express 7; in terms of 7y. How-
ever, rather than being related by a constant, p, as in M /M /1 queue, they are instead related by
a matrix R, such that

ﬁi:ﬁi—l-R, Vi >0
which, when expanded, yields
7 =a,.RY, Vi>0.

By substituting this guess into the matrix equations yields the following:

To.Lo+7 .B =0 = To. Lo+ 7 .B =0,
To.F+#, R.L+7,.R*>.B =0 = @ .(F+R.L+R>.DB) 0,
= =0,

# . F+# .R.L+7% .R?.B = # .(F+R.L+ R?.B)

i1 . F4+#_4. . R.L+7%_,.R2.B =0 = 7,.(F+R.L+R?>.B) =0, Vi>1.
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We observe that the common portion is (F + R . L + R? . B) = 0. Then, we use this common
portion to determine R as follows:

(F+R.L+R*.B) = 0,
= R.L = —(R?>.B+F),
= R = —-(R*’.B+F)L},

then, we solve for R by iterating (here R,, denotes the nth iteration of R):
« Let Ry = 0 (or a better guess, if available).

« While || R,+1 — R, ||> € (The typical definition is the maximum of all the elementsnis the
matrix R,;;1 — R,),set R,;1 = —(R? . B+ F)L™ 1.

This process keeps iterating until it determines that R has converged. Once R converges, we set
7?1' - 7?0 . Rl

« Then, we have two equations involving 7,: 7y . (Lo + R . B) = 0 and the normalizing
equation 7 . 1 = 1. We rewrite the normalizing equation in terms of 7:

Al
—y
I

\‘P—‘

L[]
;u
e
—l

I

\.H

st
&
=l
I
\.)—‘

511
—~
|
|
G
AN
—
Il
[

« By using the notation ¢ = Lo+ R . Band ¢ = (I — R)"'I. Thus, 7y(Ly+ R . B) = 0
becomes 7y = 0 and 7,(I — R)™! . 1 = 1 becomes 7y1) = 1.

« After replacing one equation of ¢ (the first column ) with the normalizing equation ) and
the first element of the zero with 1, the system of equations has a unique solution, and we
solve this system for 7.

. Using ; = 7, . RY, we get all the 7;.
2.5 Numerical examples

We present a numerical example to determine the steady state probabilities {(7g;;, 71;;) for 0 <
i <2;0 < j < 2}. Therefore, note that
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To = (7000, T100, T001, T101, T002, T102);
1 = (7701077T11077T()1177T11177T()12,W112)7

T = (7T020, 7120, 71021, 71121, 77022, 7T122)7

also satisfies @ . 1 = 1, Z?:o 7 .1 = 1 (where Iisa 6 x 1 column vector of ones) and
2 2
Do 2j=o(moij + ;) =1

-2 4 0 0 0 0 0 0 0000 00 00 0 0
H ¢ Ap,0 0 0| 0 42 00 0D 0 0000 0 0
0 6 D A0 0 000000 00 00 0 0
0 0 H cip, 0 00 04 0O 00 00 0 O
0o 0 o 8 D 2 0 0 00 0 O 00 00 0 0
0 0 o o0 H C 00 00 0 4 00 00 0 O
01 00 00O -4 0 0 0 0 0 00 00 0 O
00 00 0O H C ip; 0 0 0 041 00 0 O
00 0 A1 00O 0o 0 _;, 000 00 00 0 O
00 00 0 0 0 0 HCAp 0 o5 0 01 0 0
00 00 0 1 0o 0 o0 0-4 g 00 00 0 0
0000 0 0 0 0 00 H C| g0 00 0
0 0 00 0 O 0 A 00 0 O -1 0 0 0 0 0
0 0 00 0 O 00 00D 0 O H ¢ Ap; 0 0 0
00 00 0 O 00 0 A 0 0 o 0 ; 0 o0 o0
000000 000000 0 0 H Cip 0
000000 0000 0 2 0 0 0 0-42 o
000000 0000 00 0 0 00 H C

Where H=u(l—p;) -D=—-[A+96 ]
and C=—[A+dpy +p(l—py) ]

Figure 2.9: Qfor 0 <i <2;0 < j <2}

In Figure 2.9, the matrix obtained here is similar than these in section 4. Then, based on the
matrix analytic method proposed, we briefly provide some numerical examples in some cases
that examine the sensitivity and the impact of the system parameters: customers’ arrival rate A,
service rate y, retrial rate 6 and p; on the stationary distribution 7@ = (7, 71, T2). The values of
these parameters are chosen so that they satisfy the stability condition.

Tables 2.1, 2.2 and 2.3 list values of 7 for different values p;, A and p. The results exhibit the
expected behaviour, that is for each fixed value of 6, i1, A and p;.

In Tables 2.4, 2.5 and 2.6 we calculate some performance measures of the system as the mean
number of customers in the orbit 72,, in the queue 7, and in the system 7.
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Table 2.1: Stationary distributions for p = 1.

6 =0,05 p1=0,25 | pp=0,5 | p1 =0,75
= The stationary A=0,18 A=0,2 A=0,1
distribution p=0,30 p = 0,60 p=0,70
000 0,251361 0,241127 | 0,293949
100 0,094564 0,086836 | 0,101765
7o 001 0, 140953 0,155591 | 0,146214
101 0,056322 0,060428 | 0,057199
002 0,067175 0,086198 | 0,067801
T102 0,025716 0,031013 | 0,023521
7010 0, 081337 0,067320 | 0,070536
110 0, 032535 0,026928 | 0,028214
1 To11 0, 059996 0,064573 | 0,065840
111 0,020745 0,020443 | 0,017872
To12 0, 029689 0,037855 | 0,033340
112 0, 009801 0,011053 | 0,007974
7020 0, 027984 0,020876 | 0,019556
120 0,011194 0,008350 | 0,007822
) 021 0,021818 0,021346 | 0,019650
T121 0,007608 0,006868 | 0,005513
022 0,011202 0,013200 | 0,010769
T122 0, 003720 0,003906 | 0,002654

Z 0 zfzo(ww + T145) 0,953721 0,963912 0,980188

Table 2.2: Stationary distributions for p = 2.

6 =0,05 p1L=0,25 | pp=0,5 | p1 =0,75
= The stationary A =0,36 A=0,4 A=0,2
distribution p=0,30 p = 0,60 p=0,70
000 0, 381733 0,211534 | 0, 236644
100 0,090449 0,072130 | 0,078785
7o 001 0,174477 0,168535 | 0,170511
101 0,042263 0,061415 | 0,061620
002 0,063818 0,118307 | 0,108420
102 0, 014908 0,040955 | 0,035724
7010 0, 083967 0,055919 | 0, 055565
110 0,020152 0,022368 | 0,022226
71 To11 0,045586 0,062335 | 0,064269
111 0,009732 0,020461 | 0,019040
To12 0,016933 0,045514 | 0,043407
112 0, 003480 0,014113 | 0,011651
7020 0,018708 0,017341 | 0,015675
120 0, 004490 0,006936 | 0,006270
o 021 0,010449 0,020428 | 0,019299
T121 0,002238 0,006784 | 0,005838
T022 0,003942 0,015498 | 0,013792
T122 0,000812 0,004843 | 0,003765

Z Z‘?:O(wm + T145) 0,988138 0,965415 0,972502

Table 2.3: Stationary distributions for p = 3.

8=0,05 P1=0,25 | p1=0,5 | p1 =0,75
= The stationary A=0,54 A=0,5 A=0,3
distribution p = 0,30 p = 0,50 p=20,70
7000 0, 339849 0,230564 | 0, 228960
100 0, 079551 0,067690 | 0,072467
7o 001 0,195791 0,189494 | 0,176521
101 0, 046568 0, 058200 0, 060636
002 0, 088553 0,132544 | 0,124222
102 0, 020426 0, 038900 0, 039779
7010 0, 073658 0,055090 | 0, 050811
110 0,017678 0,018363 | 0,020324
71 To11 0, 048683 0,059148 | 0,061491
111 0,010623 0,016656 0, 018499
012 0, 022280 0, 042502 0, 045503
112 0, 004710 0,011392 | 0, 012652
7020 0, 016368 0,014945 | 0,014251
120 0, 003928 0,004982 | 0,005700
7o 7021 0,011073 0,016752 | 0,018293
121 0,002422 0, 004754 0, 005607
022 0,005128 0,012364 0,014201
122 0, 001085 0,003329 | 0,003998

T—0 20— (m0ij + 71i5) 0,988372 0,977666 0,973916
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Table 2.4: Performance measures for y = 1.

b1

P

)

Ny

n

0,25

0,3

0,602050

0,401155

1, 265400

0,25

0,7

0, 719818

0,484046

1, 504296

0,50

0,6

0,695701

0, 377266

1, 328794

0,50

0,9

0, 802063

0,457317

1, 559500

0,75

0,7

0, 604406

0, 355702

1,212643

Table 2.5:

Performance measures for p = 2.

y41

p

no

g

n

0,25

0,1

0, 393624

0,094697

0,570672

0,25

0,2

0,400394

0, 114475

0,604274

0,25

0,3

0,492531

0,261127

0,942183

0,25

0,4

0, 579220

0,317857

1,121311

0,25

0,5

0,773235

0, 397808

1, 430926

0,25

0,6

0, 810404

0, 445972

1,538047

0,25

0,7

0,838871

0, 487261

1,627525

0,50

0,2

0,207289

0, 138650

0, 459690

0,50

0,3

0,457421

0,213101

0, 832645

0,50

0,5

0, 738598

0, 317964

1,281377

0,50

0,6

0, 818418

0,364370

1,432792

0,50

0,8

0, 845337

0, 421438

1,549216

0,50

0,9

0, 854948

0,446507

1,597139

0,75

0,4

0, 168929

0,032056

0, 358454

0,75

0,7

0, 774095

0, 345438

1,364452

Table 2.6:

Performance measures for pu = 3.

b1

p

no

g

n

0,25

0,2

0, 343849

0, 174650

0,655122

0,25

0,3

0, 599522

0,257641

1,044153

0,25

0,4

0, 765932

0,332529

1, 325862

0,25

0,5

0,818513

0, 392652

1,469175

0,50

0,3

0,578726

0,210169

0, 949430

0,50

0,5

0, 827064

0,317399

1,368726

0,50

0,7

0, 879828

0,393043

1,539275

0,75

0,2

0, 180412

0, 120561

0,402036

0,75

0,7

0,821739

0, 333380

1, 394802

0,75

0,9

1, 336944

0, 575866

2,166579

We also visualize these results graphically, and we obtain the following curves for different per-

formance measures with respect to p and for each p.
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——p1=0,25 p1=0,5

0,0

Figure 2.10: 1, with respect to p for y = {1, 2,3} and p; = {0.25,0.50,0.75}.
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——p1=0,25 p1=05 p1=0,75
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—p1-0,25 p1=0,5

np1=0,75

Figure 2.11: i with respect to p for = {1,2,3} and p; = {0.25,0.50,0.75}.

According to the curves obtained from Tables 2.4, 2.5 and 2.6 and for the different values of
w={1,2,3}, we observe that n, n,, or 77, increase with respect to the values of the traffic intensity
p, decrease with respect to p; the probability of service interruption and joining the orbit. We
note that the mean number of customers reaches the maximum values for the smallest probability
p1 = 0.25. And that the curves are almost identical for p; = 0.25 and p; = 0.5. But in all cases,
N, is higher than n,,.

For 1 = 1, the curves are linear because we did not obtain much data since there are very few
solutions of the stationary distributions of the studied system. Otherwise, when 1 = 2, there are
more values.
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Chapter 3

M/M/1 Queue With Retrials After
Service Interruption Option Selected By

Customer And Orbital Search

In the study of retrial queues, several papers are interested in obtaining the limiting distribution
of the system state, the performance measures and emphasizes the impact of specific descriptors
defined in the model under study. Sometimes it is possible to derive closed-form expressions, we
refer to Arrar et al. (2012), Arrar et al. (2017), Krishnamoorthy et al. (2005), Wang (2004), Wang &
Zhao (2007) as a selection of the related literature, but very often the absence of explicit formulas
and recursive schemes for the computation of the limiting probabilities or even impossible to
find the limiting distribution of the system state. This difficulty motivates the implementation of
approximations numerically.

The literature on approximations of retrial queues is various. The paper by Gomez-Corral (2006)
includes a bibliographical guide to the use of the matrix analytic methods in retrial queuing sys-
tems, and for a related approximation, we refer to Baumann & Sandmann (2012), Harchol-Balter
(2013), Neuts (1981), Neuts & Rao (1990).

Our aim in this chapter is to describe the main model first, then provide a simple and efficient
procedure for the computation of the limiting probabilities {m.;;, 0 < ¢ < 1,7 > 0,5 > 0}
by using the matrix analytic methods and calculating the performance measures of the main
model under study. Finally, the influence of some parameters on the performance measures of
the system has been examined numerically and illustrated.

3.1 Model description

In this model, we analyze a M/M/1 retrial queue with customers’ break choice and constant
retrial policy. We consider a single server retrial queueing system; whose orbit and queue have
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infinite capacity. We suppose that primary customers arrive according to a Poisson process with
rate A > 0. The service time is exponentially distributed with parameter p. The following rules
govern the dynamic of the customers:

« If an arriving customer finds the server idle, he immediately begins his service. Otherwise,
an incoming customer that finds the server occupied, will join the line of the queue in the
service area according to FCFS discipline.

« We assume that a customer who has started his service, may decide to interrupt it and go
on vacation or take a break. For this fact, he has to leave the service area and enter the orbit
before returning for another service. Thus, the customer can leave the system permanently
with probability (1 — p;), after finishing his service, or join the orbit with probability p;
and return to the server after a period of time.

« We assume that the customers have first access to the orbit after an initial service with rate
Ap1, Takas (1963).

« An orbiting customer attempts to access to the server directly at random intervals time
(without rejoin the queue line in service area), where the inter-retrials times are exponen-
tially distributed with rate # > 0, according to the linear retrial policy a(1 — do;) + 76,
given that o is a constant rate, dy; denotes Kronecker function and the rate ;6 is the so-
called classical retrial policy rate depending on how many customers j are on orbit.

+ An orbiting customer can access the server for another service only if the queue is empty.

+ The server can go in search of customers immediately after each service completion, by
picking up an orbital customer with probability p. The search time is assumed to be negli-
gible. The probability for not going for the search of customersis ¢ =1 — p.

« All the random variables defined above are mutually independent.

Adding to the previous parameters, we define the global traffic intensity given by

)\+)\p1
p(1—p1)’

it is the ratio of the arrival rate A + Ap; to the departure rate p(1 — p;), Artalejo et al. (2002). We

can write also, p = p, + p,, where p, = m is the traffic intensity of primary customers and

2PL_ js the traffic intensity of orbiting customers.

Po = ui—p1)

3.2 Stochastic analysis

We denote by N,(t) how many customers queued at given time ¢. excluding any customer who
may be in service. N, (¢) is the number of orbital customers at the instant ¢. And let C'(¢) be equal
to 0 or 1 depending on the state of the server if it is idle or busy at time ¢.
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And, depending on the state of the server, whether it is idle or busy at time ¢, let C'(¢) be 0 or 1.
Let N (t) denotes the total number of customers in the system at time ¢ (i.e. in orbit, in queue line
and in service), where N (t) = N,(t) + N,(t) + C(¢).

So that the continuous-time stochastic process x = {C(t), N,(t), N,(t);t > 0}, describes the
state of the system with state space (c,4,7) € {0,1} x N x N.

Its infinitesimal transition rates g ; j)(c,m,n) and q(1,i5)(c,m,n) are given by

« Fori =0and j = 0:

A, if (¢,m,n) = (1,0,0);
q(0,i,5)(c;mm) = _/\7 if (C7man) = (Ovza])v
0, otherwise
and

A, if (¢,m,n) = (1,1,0);
Ap1, if (¢,m,n) = (0,0,1);
Q(l,i,j)(qm,n) = M(l - p1)7 if (Cama n) = (Oa 07 0))
_[)‘ + )‘pl + ,u(l _pl)]a lf (Cvma n) = (17 i7j>a

0, otherwise.

« Fori =0andj > 1:

A, if (¢,m,n) = (1,0,);
_ a(l_aoj)+j07 .f(cvmvn):(lvoaj_m;
Qoiptemn) = [\ + a(1 = ;) + 6], if (c,m,n) = (0,4, 5);

0, otherwise

and
, A, if (e, m,n) = (1,4,7);
Ap1, if (¢,m,n) = (0,0,7+ 1);
4(1,i,5)(c;mn) = (= p) + ai, %f (c;m, n) = (0,0, );
Ji,5)(c,;m,n pu, (C, m, n) (17 0 ] - 1)7
—[/\—i—)\pl—i-,u(l—m)‘i‘q,u‘i‘pﬂ]a if(c,m,n) (1’27‘7)’
0, otherwise.

\
« Forj=0andi > 1:

A, if (¢,m,n) = (1,i—1,0);
q(0,i,5)(e,;myn) = _)\7 if (Cv m, n) - (07 i? j)a
0, otherwise

and
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A, if (¢,myn) = (1,i+ 1,0);
Ap1, if (¢, m,n) = (0,i,1);
A(1,i)(emm) = p(1 —p1), if (e, m,n) = (0,4,0);
_[/\+)\p1+ﬂ(1_p1>], if(c,m,n) = (17Zaj)7
0, otherwise.

« Fori >1landj > 1:

A, if (e,m,n) = (1,i—1,7);
4(0,i,5)(c;m,n) = _Av if (C7m7n) = (0,'&,])7
0, otherwise
and
( A, if(e,m,n) = (1,i+1,7);
Ap1, if (¢,m,n) = (0,4, + 1);
. _ (1 —p1) +qp, if (¢,m,n) =(0,1,5);
A s emm) p, if (e,m,n) = (1,4, — 1);
\ , otherwise.

The stochastic behaviour of the process x can be represented with the help of the graphical tran-
sitions shown in Figure 3.1.

A
. Al p1-
H1-po) / \ h‘ﬂ i

e?
=
|
]
i
[
T
-t
[

b
-—
—

p(1—py) +qp

111(}(1—5(]?)+j9
. / \H( 1-py)+qu
p(1-py) +qu . O . A @
A

N o
«— =
—»

Figure 3.1: Graphical transitions.
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Particular cases

In Figure 3.2, we present some special cases of our model by setting appropriate parameters as
follows:

+ The main model behaves like a M /M /1 queue with retrials after interruption service and
orbital search according to a constant retrial policy if § = 0;

« The main model behaves like a M /M /1 queue with retrials after interruption service and
orbital search according to a classical retrial policy if a« = 0;

« The main model behaves like a M /M /1 standard queue according to first come, first served
(FCFS) discipline if p; = 0;

« The main model behaves like a M /M /1 queue with retrials after interruption service if
p = 0 (where there is no orbital search). In this case, we can get three cases, depending
on the retrial policy that is selected (it can be according to a linear retrial policy or either
according to a classical retrial policy when o = 0 or constant retrial policy when § = 0);

+ The main model can be without waiting space. Then, if an arriving customer finds the server
idle, he immediately begins his service. Otherwise, an arriving customer who finds the
server busy, leaves the system without any effect on the system. Its infinitesimal transition
rates g(o,n)(c,m) and q(1,n)(c,m) are given by

qon)(1n) = A, Vn > 0;
q0,)(1,n—-1) = (1 = o) +n0,Yn > 1;
q(1,0)(0,0) = #(1 = p1);
Aamyon = 1(1 —p1) +qu,Vn > 1;
d(1,m)(1,n—1) = P, Y > 1;
q(1,n)(0.n+1) = Ap1,Vn > 0.

The set of statistical equilibrium equations for the probabilities {7, 71 ,;Vn > 0} have
the following expressions

Ao = p(1 = p1)mio; (3.1)

A+ a1l = doj) + jO)mom = A1 -1 + [(1 — p1) + qulm1n, YN > 1; (3.2)

{Ap1 4+ (1 = p1) Y = Amoo + [a(1 = o) + j0]mo1 + pumy g (3.3)

{Ap1 + 11 —p1) + g+ putmin = Ao + [l = 0oj) + 70701 + PUTLpy1, VN> 1(; )
34

and the normalization equation ) - Ton + D 50 T1,n = L.
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Figure 3.2: Particular cases.

In this paper, the retrial models operating under the classical retrial policy or the linear policy
have transitions between states (0, 0, j) that depend on the third coordinate j. The main analytical
difficulties are related to this fact. Since we cannot obtain the steady state distributions of the
model in an explicit form. We can solve only one instance of the chain, when the rates are all
numbers, by using the Matrix analytic methods, which are approximate numerical methods for
solving complex Markov chains.

3.3 Matrix-Analytic Method

To illustrate the method, it is useful to start by rewriting the balance equations in terms of a
“generator matrix”, Q. This is a matrix such that

7.Q=0, where®.1=1. (3.5)

Here, 7isa 2 x (by + 1) x (by + 1) row vector of all the limiting distribution probabilities

™ :(7000,W10077T00177T101, -++y 0055 71105, 770105 771105 770115 71115 -+ 70155 7115, ---7770ij>7rlij>7 (3.6)
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VO <1 <b,0< 75 < by, and Tisan appropriately sized vector of 1s, and 0 denotes a vector with
an infinite number of null entries.

Partitioning the limiting probability vector 7 as
7?:(7?0,7?1,...7?1'), fOI‘OSZ Sbl, (37)
where

T = (00> T1405 T0i1s T1ils -+ Toijs T1ij), for 0 < j < by. (3.8)

O) (17 07 0)7 ) (07 07j)7 (17 O?j)7 <O7 17 0)7 (17 17 0)7 A (07 17j)’
(1,4,7)}, we can express the infinitesimal generator Q of

By ordering the states as S = {(0, 0,
i),
> (0} in the following matrix block form:

(0,
(1,1,5),...,(0,4,0),(1,2,0), ...,
the process {C(t), N,(t), N,(t); ¢

0,0
0,

Ly F
B L F
Q= B L F
where

-2 A 0 O O O O O 0 o0
w(l—p1) Ag App 0 0 O O 0 0 O
0 s T X 0 0 0 0 0 ©0
0 pu V. AL Apr 0O 0 0O 0 0
Lo = 0 o o S T X 0 0 0 0
0 0O 0 pu V A Apr 0 0 O
0 o o o o S T X 0 0
0 0O 0 0 0 pu V A App O
—-A o o0 o0 0 0 0 0 0 O
w(l—p1) Ag Apr 0 0 O O 0 0 O
0 0O - 0 0 0 0 0 0 O
L = 0 o 0 0 -=x 0 0 0 0 O
0 0O 0 pu V A Apr 0 0 0
0 o 0 0 0 0 =X 0 0 O
0 0O 0 0 0 pu V A App O

with Ag = —[A+Ap1 +p(1 —p1)], A = —[A+Ap1+ p(1 —p1) + qu+pul, S = a1 = dy;) + 50,
T =—[A+a(l —dy;) +j0land V = p(1 — p1) + qp.
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00 0 0 0 0 0
0O A 0 0 0 0 0
00 0 0 0 0 0

r—lo o 0o x 0 o0 0.
00 0 0 0 0 0
00 0 0 0 X\ 0
00X 0 0 0 0 ...0
00 0 0 0 0 ...0
00 0 A 0 0 ...0

B=1o 0 0 0 0 0 ...0
00 0 0 0 A ...0

3.4 Numerical examples

We present a numerical example to determine the steady state probabilities {(7g;;, 71;5), for 0 <
i<2and0 < j <3}

Therefore, note that
o = (Wooo 7100 7001 7101 7002 7102 7003 7T103),

7T1=(77010 110 7To11 7111 To12 7112 7013 7T113),

772:(77020 120 To21 7121 To22 7122 7023 7T123),

also satisfies

7.1=1;
2
Z 7.1=1; (where 1is a 8 x 1 column vector of ones)
i=0
2 3
Z Z(ﬂ'ol’j + 7T1ij> =1. (39)
i=0 j=0
And
Ly F O
Q=|B L F
0O B L
where



-A A 0 0 0 0 0 0

VO AO )\pl 0 0 0 0 0

o S T X 0 0 0 0
Lo — 0 pu \% Al )\pl 0 0 0
° 10 0o 0o S T X 0 o0’

0 0 0 pu V Ay My O

0 0 0 0 o S T A

0 0 0 0 0 pu V A,

-A 0 0 0 0 0 0 0

Vo Ag Ap1 O 0 0 0 0

0O 0 =X 0 0 0 0 0
I _ 0O pu V Ay dpp 0O 0 O

0 0 0 0 =X 0 0 0|’

0 O 0 0 0 0O =X 0

0O 0 0 0 0 pu V A,

withS =a+j0, T=-A—a—j0,V=pu(l—p1)+qu Vo= pu(l —p1), Ao = —[u(l —p1) +
A+, Ay = —[u(l —p1) +p+ A+ Apy] and Ay = —[u(l —py) + p+ Al

OO DOD DD O OO oo
O OO DO OO O
SO OO DO OO oo
OO OO >»O OO
SO OO OO oo

S OO OO o oo
OO >0 OO0 oo
> O OO oo oo

O OO OO o oo
O OO OO OO
O OO OO o OO
O OO OO OO
O OO O OO OO
S OO >0 O oo
O OO O OO oo
O > O O O O OO

Then, based on the matrix analytic method proposed, we briefly provide some numerical examples
in some cases that examine the sensitivity and the impact of the system parameters: customers’
arrival rate ), service rate y, retrial rate 6, o, p and p; on the limiting distribution @ = (7, 71, T2)-
The values of all the parameters were chosen, so that they satisfy the stability condition p < 1,
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Sumitha & Udaya Chandrika (2012) and the normalizing condition Z?:o Z?ZO(WOU + my45) = L.

After the above conditions have been verified, we study the behaviour of the following perfor-
mance measures according to the retrial rate 6, the orbital search rate p and the traffic intensity

p:
+ The mean number of customers in the system: 7 = Z?:o S22 [ 5)mosj + (45 4 1) )5

. _ 2 3
« The mean number of customers in the queue: 1y = > 7" i > 5 (Toij + T1i5);

« The mean number of customers in the orbit: i, = Z?:O 3322 (moi; + mij)-

For different values of (p1, A) ((0.25,0.18), (0.50,1.2), (0.75,0.04285714)) and for a fixed value
of p=0.3,u=1,p=0.4andf = 0.1, the Table 3.1 presents the values of 7 in case of the linear
retrial policy, for = 0.05, Table 3.3 has the values of 7 in case of the classical retrial policy and
Table 3.5 has the values of 7 in case of the constant retrial policy for a = 0.05.

In a similar way, for another different values of (p;, A) ((0.25, 0.3), (0.50, 0.1666667), (0.75,0.07142857))
and for a fixed value of p = 0.5, p = 1, p = 0.6 and § = 0.2, the Tables 3.2, 3.4 and 3.6 present

the values of 7, respectively, in case of: the linear retrial policy, the classical retrial policy and the
constant retrial policy, with a = 0.1.

Table 3.1: Values of 7 for the linear retrial policy with a = 0.05.

The limiting distribution p=03pu=1¢€= 107, p=04,0=0.1
pL=025A=0.18 | p1 =050, A=0.1 | p1 = 0.75, A = 0.04285714
000 0.590148 0.645851 0.7008437
100 0.1390074 0.1250751 0.1150974
001 0.03858691 0.0402677 0.02506241
101 0.004798773 0.00346652 0.001334005
002 0.0008211582 0.0006755377 0.0001726865
T102 0.000101595 5.737472 x 10> 9.051445 x 10~6
T003 1.285912 x 103 8.154333 x 106 8.443465 x 10~ 7
7103 1.661895 x 10— 7.279214 x 10~7 4.796267 x 10~8
7010 0.1307079 0.1130031 0.1010489
110 0.03136989 0.02260062 0.01732267
To11 0.01292814 0.01534931 0.01529023
T111 0.0006780884 0.000368091 0.0001158773
To12 0.0002684396 0.0002437705 0.000100796
T112 1.3189 x 10~° 5.429549 x 10~6 7.002361 x 107
T013 4.960086 x 106 3.492411 x 106 6.025273 x 10~ 7
113 2.217114 x 10~7 7.069421 x 10~8 3.900015 x 10~9
020 0.02940598 0.0203566 0.01518462
T120 0.007057436 0.00407132 0.002603077
021 0.002612059 0.002585267 0.002242
T121 0.0001130267 4.996426 x 10> 1.460633 x 10~5
T022 4.262527 x 10° 3.193033 x 105 1.256121 x 10—°
T122 1.915812 x 10— 6.316543 x 10~ 7 8.09982 x 108
T023 7.153594 x 107 4.032019 x 107 6.969096 x 10~8
T123 3.152084 x 108 7.943157 x 1079 4.508726 x 1010
> ijo(ﬂ'()ij + T14j) 0.988683 0.994072 0.996457
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Table 3.2: Values of 7 for the linear retrial policy with a = 0.1.

The limiting distribution p=05pu=1e=10"",p=06,0=0.2.
pL=025X=0.3 | pi = 0.50, A = 0.1666667 | p1 = 0.75, A = 0.07142857

T000 0.4222393 0.4985866 0.5696219
100 0.1636481 0.1575284 0.1516412
Too1 0.03797358 0.04210704 0.02741862
T101 0.009139597 0.007247313 0.003169886
002 0.001345373 0.001201436 0.0003476965
T102 0.0003398508 0.0002189052 4.441288 x 105
T003 3.755425 x 10~° 2.678745 x 10~° 3.546893 x 10~
T103 1.049169 x 10~° 5.526326 x 10~ 5.490973 x 107
010 0.1478462 0.1336726 0.123095
110 0.0591385 0.04455754 0.03516999
mo11 0.0242917 0.03031824 0.03128152
T111 0.002480107 0.001488791 0.0005389042
To12 0.0009658119 0.0009807389 0.0004728451
T112 9.020479 x 10~° 4.376732 x 107° 7.545818 x 10~6
T013 3.413895 x 105 2.84758 x 105 6.611407 x 10~6
T113 3.022892 x 10—6 1.220767 x 10~ 1.046202 x 10~7
T020 0.05316112 0.03762091 0.02847453
120 0.02126445 0.0125403 0.008135581
To21 0.008247441 0.008227445 0.007140646
T121 0.0007646947 0.0003624618 0.0001141715
To22 0.0002930559 0.0002362586 9.996592 x 10~>
T122 2.657797 x 1075 1.019032 x 102 1.575531 x 106
T023 1.016491 x 103 6.681495 x 106 1.386409 x 106
T123 9.183687 x 10~ 7 2.93766 x 10~7 2.250118 x 10—8

>0 2 —o(moij + m1ij) 0.953352 0.977018 0.9867881

Table 3.3: Values of 7 for the classical retrial policy (o = 0).

The limiting distribution p=03p=1€e=10"",p=04,0=0.1
pL=025X1=0.18 | p1 =05, A=12 | p1 =0.75, A = 0.04285714

000 0.5754542 0.6264096 0.6833294
7100 0.138109 0.1252819 0.1171422
001 0.0518391 0.05630338 0.03674832
T101 0.00614818 0.004542346 0.001746442
T002 0.001259196 0.001072448 0.000276671
T102 0.000149501 0.00008601555 0.0000130069
T003 0.00002151897 0.00001399097 1.39423 x 10~6
T103 2.667823 x 106 1.17783 x 10—6 7.052077 x 10—8
To10 0.1301741 0.1134501 0.1029526
T110 0.03124178 0.02269002 0.01764901
To11 0.01388877 0.01615636 0.01583333
Ti11 0.000810443 0.000437396 0.0001309193
To12 0.000339369 0.0003001244 0.0001150413
T112 1.823443 x 102 7.402401 x 106 8.496686 x 10~7
T013 7.086021 x x10~6 | 4.854298 x 10~ 7.331469 x 107
T113 3.369883 x 107 1.04827 x 10~7 4.835063 x 10~Y
020 0.02931635 0.02045363 0.01547427
T120 0.007035924 0.004090726 0.002652733
To21 0.002703665 0.002645083 0.00229322
T121 0.0001259578 0.00005451999 0.0000153111
T022 0.00004982266 0.00003570503 0.00001321699
T122 2.444428 x 10~6 7.677305 x 10~7 8.741172 x 10—8
T023 9.454552 x 107 4.994191 x 10~7 7.53402 x 10~8
T123 4.457977 x 10~8 1.050489 x 108 4.931804 x 10~10

> ijo(ﬂ'oij + T145) 0.9886985 0.9940382 0.9963889
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Table 3.4: Values of 7 for the classical retrial policy (o = 0).

The limiting distribution p=05pu=1e=10"",p=0.6,0 =0.2
pL=025X=0.3 | p =0.50, A = 0.1666667 | p1 = 0.75, A = 0.07142857

T000 0.4066091 0.4748591 0.5445161
100 0.1626436 0.1582863 0.155576
Too1 0.05005936 0.05822721 0.0401744
T101 0.01115775 0.009066058 0.003953922
002 0.00193731 0.001802785 0.0005279602
T102 0.0004515529 0.0002956372 0.00005704345
7003 0.00005594639 0.00004099495 5.210992 x 10~6
103 0.00001433503 7.547805 x 106 6.814002 x 10~7
010 0.1476159 0.1349189 0.1265567
T110 0.05904637 0.04497297 0.03615906
To11 0.0254885 0.03157541 0.03250287
Ti11 0.002798325 0.001683134 0.0005916009
To12 0.001120627 0.001126652 0.0005206301
T112 0.0001098381 0.00005279341 8.453775 x 10~6
013 0.00004200964 0.00003448311 7.394912 x 10~6
T113 3.795683 x 106 1.497482 x 106 1.15888 x 10~7
020 0.05318374 0.03803282 0.02928964
T120 0.02127349 0.01267761 0.00836847
To21 0.008444061 0.008416814 0.007363395
T121 0.0008153968 0.0003848167 0.0001194553
T022 0.0003188773 0.0002533044 0.0001047189
T122 0.00003000734 0.00001127704 1.662357 x 1076
T023 0.00001160231 7.427171 x 10~6 1.462561 x 10~
T123 1.069688 x 106 3.312314 x 107 2.371352 x 108

=0 > 5—0(m0ij + T145) 0.9532326 0.9767359 0.986407

Table 3.5: Values of 7 for the constant retrial policy (6 = 0).

The limiting distribution

p=03pu=1e=10"",p=04,a=0.05

p1 =025 x=0.18

p1 =050, A = 0.1

p1 = 0.75, A = 0.04285714

7000 0.5540986 0.5988841 0.6620737
T100 0.1329836 0.1197768 0.1134984
T001 0.07636424 0.08839677 0.0634247
T101 0.008577415 0.006609705 0.002636794
T002 0.004504865 0.004522928 0.001381255
T102 0.0004815817 0.0003163217 5.118274 x 105
7003 0.0002493836 0.0002137289 2.644291 x 10~5
7103 2.643485 x 10~° 1.476659 x 10~° 9.532396 x 10~ 7
010 0.1259563 0.109028 0.1000165
T110 0.03022951 0.0218056 0.01714569
To11 0.01542753 0.0171366 0.01600702
T111 0.001049354 0.0005667095 0.00015871
To12 0.0006511389 0.0005304503 0.0001613974
T112 5.184005 x 10~2 2.246323 x 10—° 2.136046 x 10~6
T013 3.405675 x 10~° 2.253655 x 105 2.313148 x 106
113 2.812898 x 10~6 1.027721 x 10~ 3.585448 x 10~8
020 0.02842768 0.01969275 0.01504186
T120 0.006822644 0.00393855 0.002578605
021 0.002821136 0.002651154 0.002250057
T121 0.00014873 6.198894 x 10> 1.593798 x 10~5
T022 8.096822 x 10~° 5.021091 x 105 1.452213 x 103
T122 5.838095 x 10—6 1.746949 x 106 1.295113 x 10~7
T023 3.725683 x 10~6 1.676963 x 10~6 1.283736 x 10~7
T123 3.021545 x 107 7.304443 x 108 1.575133 x 109

> i—0 2 y—0(m0ij + m1ij)

0.9889997

0.9942467

0.9964885
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Table 3.6: Values of 7 for the constant retrial policy (6 = 0).

The limiting distribution

p=05pu=1e=10"",p=04,a=0.1

p1=025A=03

p1 = 0.50, A = 0.1666667

p1 = 0.75, X = 0.07142857

T000 0.3906255 0.4520127 0.5256363
T100 0.1562502 0.1506709 0.1501818
Too1 0.07058136 0.08794192 0.06748801
T101 0.01435981 0.01210586 0.005421417
7002 0.005877452 0.00653187 0.002294034
102 0.001107822 0.000814456 0.0001582
7003 0.0004408081 0.00042967 6.565423 x 10~5
T103 8.107532 x 10~3 5.189704 x 10~2 4.276941 x 10—6
010 0.1430658 0.1296599 0.1227949
110 0.05722632 0.04321998 0.03508427
To11 0.02695917 0.03231844 0.03233373
T11 0.003300677 0.001983047 0.0006615969
To12 0.001660531 0.001575287 0.0006234733
T112 0.0002179206 0.0001081043 1.398633 x 102
T013 0.0001132066 8.930036 x 105 1.346917 x 105
T113 1.531995 x 10~5 6.527447 x 10~6 3.274094 x 10~7
T020 0.05174727 0.03668014 0.02845325
T120 0.02069891 0.01222671 0.0081295
To21 0.008584162 0.008326975 0.007196849
T121 0.0008894178 0.0004099293 0.0001208488
To22 0.0004051442 0.0002971419 0.0001082873
T122 4.768429 x 10~° 1.706986 x 102 1.939634 x 106
T023 2.361115 x 10—5 1.337758 x 102 1.780166 x 10—6
T123 3.049585 x 106 8.967875 x 10~ 7 3.57627 x 10~8

>0 2j—0(m0ij + T1i5)

0.9542822

0.9774921

0.986788
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On the other hand, it is worthwhile to note that the matrix analytic method proposed in this
paper works and is numerically stable one. Moreover, it can be applied on models which satisfy
all the previously mentioned conditions.

The impact of the retrial rate 6.
Table 3.7: Performance measures for p = 0.3,y = 1,p; = 0.25,a« = 0.05 and p = 0.4.

0 7, 7, n
0.1 | 0.06227618 | 1.586191 | 1.83161

0,5 1 0.03062629 | 1.575898 | 1.794099
1 0.02344094 | 1.573528 | 1.785564
5 0.01666917 | 1.571285 | 1.777516
10 | 0.01574638 | 1.570979 | 1.776419
50 | 0.0149947 | 1.57073 | 1.775525
100 | 0.01489988 | 1.570698 | 1.775412

Table 3.8: Performance measures for p = 0.3, u = 1,p; = 0.50,« = 0.05 and p = 0.4.

0 T, 7, n
0.1 | 0.06415477 | 1.6579 1.877751
0,5 [ 0.03302917 | 1.645738 | 1.839925
1 0.02636358 | 1.643106 | 1.83181

) 0.02021255 | 1.640671 | 1.824317
10 | 0.01938403 | 1.640342 | 1.823308
50 | 0.01871086 | 1.640075 | 1.822487
100 | 0.01862606 | 1.640042 | 1.822384

Table 3.9: Performance measures for p = 0.3, u = 1,p; = 0.75,« = 0.05 and p = 0.4.

0 Tl Tiq n
0.1 [ 0.04465559 | 1.705097 | 1.886251
0,5 | 0.02655224 | 1.694198 | 1.86227

1 ]0.02291502 | 1.692 1.857448
5 | 0.01963069 | 1.690014 | 1.853092
10 | 0.01919352 | 1.689749 | 1.852512
50 | 0.01883922 | 1.689534 | 1.852042
100 | 0.01879464 | 1.689507 | 1.851983

The influence of the retrial rate 0 is illustrated in Figure 3.3, from the numerical results listed in
Tables 3.7, 3.8 and 3.9. We plot the performance measures by takingp = 0.4,p =03, u =1, a =
0.05, for the values of p; = 0.25,0.50 and 0.75.

We observe that 7, 77, and 7 decrease when 6 increases, with « fixed for several choices of the
probability of service interruption and joining the orbit p;.
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The impact of the orbital search rate p.

Table 3.10: Performance measures for p = 0.3, 4 = 1,p; = 0.25,a = 0.05and § = 0.1.

........

OOOOOOO

————————

————————

]

p Ny

g

n

0.1 | 0.07616402

1.590922

1.848426

0,2 | 0.07092634

1.589142

1.84209

0.3 | 0.06633377

1.587577

1.836528

0.4 | 0.06227618

1.586191

1.83161

0.5 | 0.058667

1.584954

1.827232

0.6 | 0.05543715

1.583844

1.82331

0.7 | 0.05253092

1.582843

1.819778

0.8 | 0.04990288

1.581936

1.816582

0.9 | 0.04751564

1.58111

1.813676

Table 3.11: Performance measures for p = 0.3, 4 = 1,

p1 = 0.50,a = 0.05 and 6 = 0.1.

p Mo

Tyq

n

0.1 | 0.07341219

1.661547

1.88917

0,2 | 0.07006187

1.660228

1.88504

0.3 | 0.06698661

1.659017

1.881246

0.4 | 0.06415477

1.6579

1.877751

0.5 | 0.06153932

1.656868

1.874521

0.6 | 0.05911702

1.655911

1.871528

0.7 | 0.05686783

1.655022

1.868748

0.8 | 0.05477432

1.654193

1.866158

0.9 | 0.0528213

1.653419

1.863741
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Table 3.12: Performance measures for p = 0.3, u = 1,p; = 0.75,a = 0.05 and § = 0.1.

p

Mo

Nyq

n

0.1

0.04835619

1.707146

1.891142

0,2

0.04706388

1.70643

1.889434

0.3

0.04583162

1.705748

1.887805

0.4

0.04465559

1.705097

1.886251

0.5

0.04353225

1.704477

1.884766

0.6

0.04245836

1.703885

1.883346

0.7

0.04143092

1.703319

1.881988

0.8

0.04044717

1.702777

1.880687

0.9

0.03950454

1.702259

1.879441

&
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Figure 3.4: m,, M, and 7 by varying the p.

The effect of the orbital search rate p is shown in Figure 3.4, from the numerical results listed in
Tables 3.10, 3.11 and 3.12, where we have plotted the three performance measures, with respect
to p, for p; = 0.25,0.50 and 0.75.

We observe that for several choices of the probability of service interruption and joining the orbit

p1, M, M, and 7, always decrease.

The impact of the traffic intensity p.

Table 3.13: Performance measures for p = 0.4, 4 = 1,p; = 0.25,a = 0.05 and 6 = 0.1.

P N, Ny n
0.1 | 0.008594285 | 1.84759 | 1.929467
0,21 0.03080721 | 1.710121 | 1.874878
0.3 | 0.06227618 | 1.586191 | 1.83161
0.4 [0.09979338 | 1.47379 | 1.795509
0.5 [ 0.1410306 1.370917 | 1.763275
0.6 | 0.184278 1.275856 | 1.732519
0.7 | 0.2282345 1.187254 | 1.701635
0.8 | 0.271846 1.104098 | 1.669598
0.9 | 0.3141844 1.025631 | 1.635729
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Table 3.14: Performance measures for p = 0.4, 4 = 1, p; = 0.50, @« = 0.05 and 6§ = 0.1.

P, Tl g n
0.1 [ 0.00873337 | 1.872918 | 1.943186
0,2 | 0.03157344 | 1.758953 | 1.903693
0.3 | 0.06415477 | 1.6579 1.877751
0.4 |1 0.1031173 1.568676 | 1.861936
0.5 | 0.1460473 1.489864 | 1.853523
0.6 | 0.1913093 1.420023 | 1.850527
0.7 | 0.2378539 1.357835 | 1.851594
0.8 | 0.2850423 1.302153 | 1.855845
0.9 | 0.3325048 1.252001 | 1.862714

Table 3.15: Performance measures for p = 0.4,y = 1,p; = 0.75,a = 0.05 and § = 0.1.

p o ng n
0.1 | 0.005983884 [ 1.890856 | 1.949946
0,2 | 0.02182542 1.792536 | 1.912772
0.3 | 0.04465559 | 1.705097 | 1.886251
0.4 | 0.07212007 | 1.627936 | 1.868175
0.5 | 0.1024134 1.560115 | 1.856631
0.6 | 0.1342283 1.500577 | 1.850082
0.7 | 0.1666678 1.448272 | 1.847361
0.8 | 0.1991511 1.402225 | 1.847609
0.9 | 0.2313297 1.361565 | 1.85021
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Figure 3.5: ,, 1, and 70 by varying the p.
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In Figure 3.5, we choose the values p; = 0.25,0.50 and 0.75 to represent the performance mea-
sures 7, 1, and 7, from the numerical results listed in Tables 3.13, 3.14 and 3.15, as functions of
p-

We observe that for several choices of p;, the probability of service interruption and joining the
orbit, 7, and 77 respectively, have a decreasing shape with increasing values of p, but 1o, is strictly
an increasing function of p.
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Chapter 4

Approximation Of Models With Retrials
After Service Interruption Option,
Through The Matrix-Analytic Method

Numerical analysis deals with the study of methods, techniques, or algorithms for obtaining ap-
proximations for solutions to mathematical problems, which has played a tremendous role in
the evaluation and advancement of science and technology. Sometimes these methods involve
the development of an algorithm for the solution of problems where an analytical solution does
not exist. In this chapter, we were interested in the estimation of the steady-state distribution of
some particular cases under consideration and their performance measures by using the matrix
analytic method. Furthermore, we illustrated graphically the impact of Some parameters on the
distribution and the performance measures of each case.

4.1 Numerical analysis for a M /M /1 queue with interrup-
tion service, retrials and orbital search according to a
constant retrial policy

The model presented in this section can be seen as a particular case of the model already treated
in chapter 3. We analyse a M /M /1 retrial queue according to the constant retrial policy with
rate . Where we consider a single server and non-conventional retrial queueing system with
a new form of access to the orbit, we assume that there is no waiting space but its orbit has an
infinite capacity at which primary customers arrive according to a Poisson process with a rate
A > 0. The service times are independent and exponentially distributed with parameter p, as it
is shown in Figure 4.1.

We denote by N, how many clients are in the orbit and let C'(¢) be 0 or 1 according to the server
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Figure 4.1: State Space And Transitions.

being idle or busy at a given instant ¢.

Let N(t) denote how many clients are in the system at an instant ¢ (i.e. in the orbit and service).
Where N (t) = N,(t) + C(t).

So that continuous-time stochastic process x = {C(t), N,(t);t > 0}, describes the state of the
system with state space {c,n}, where ¢ € {0,1} and n € N.

Its infinitesimal transition rates q(o n)(c,m) and g(1,n)(c,m) are given by

« Forn 2 1:
)\ (07 m) (1 n)’
0 (C, ) (0 n— 1)7
q(0,n)(c,m) _()\ + 0) lf (C m) (Oan)7
0 otherwise.

pu(l —p1) +qu if (¢,m) = (0,n);
pbu if(c,m): 1>n_1);
A1) (em) = Apy if (¢, m)
—(Ap1 +pp 4 qp+ p(l —p1)) if (e,m) =
0 otherwise.

and

90,0(1,0) = A 41,0000 = A1 —P1)i qa1,0)0,1) = Ap1-
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Where, from a state (0, n) only transitions into the following states are possible:
« (1,n) with rate A, due to arrival of a primary customer;
« (1,n — 1) with rate 0, due to arrival of an orbital customer.

Reaching state (0, n) is possible only from states:

« (1,n) with rate (1 — py) (for n = 0) due to a service completion in case that the customer
leaves the system forever;

« (1,n) with rate (1 — py) + qu, where p(1 — py) due to a service completion in case that
the customer leaves the system forever and gu if no orbital search is made on a service
completion epoch;

« (1,n — 1) with rate Ap; due to an interrupted service in case that the customer wants to
take a break and joins to the orbit.

From a state (1, n) only transitions into the following states are possible:

(0,n) wit rate (1 — py) (for n = 0) due to a service completion in case that the customer
leaves the system forever;

(0,n) with rate (1 — py) + qu, where p(1 — p;) due to a service completion in case that
the customer leaves the system forever and gu if no orbital search is made on a service
completion epoch;

(0,m + 1) with rate A\p; due to an interrupted service in case that the customer wants to
take a break and joins to the orbit;

« (1,n — 1) with rate pp if an orbital search is made on a service completion epoch.
Reaching state (1,n) is possible from only from states:

« (0,7n) with rate A, due to arrival of a primary customer;

« (0,n + 1) with rate 6, due to arrival of orbital customer;

« (1,n + 1) with rate pu, if an orbital search is made on a service completion epoch.

Then, we define the limiting probabilities that the system is in an idle or busy period respec-
tively:

Ton tEeroo P(C(t) = 0; N,(t) =n),n > 0;
Tin tl}rﬁoP C(t) =1;N,(t) =n),n >0

The set of statistical equilibrium equations for the probabilities {7, 71 ,;Vn > 0} have the
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following expressions

Amo,0 = (1 — p1)m0; (4.1)

A+ Omon = Ap1min1 + [(1 = p1) + qulmin, Yn > 15 (4.2)

{Ap1 + (1 = p1) Y = Mmoo + O0mo1 + ppmy; (43)

AP+ p(L = p1) + pp+ quimin = Ao + 070 1 + P, VR 2> 1 (4.4)

and the normalization equation

2{:7mﬂl+_§E:WLn:: 1.

n>0 n>0

We present a numerical example to determine the steady state probabilities {(7q;, 71;) for 0 <
i < 7} through the matrix-analytic method.

Too T1g o1 Ty Moz T2 To3 T3 Tog T4 Tos ST Tog Ti6 g7 7
Ton = = 0 o 0 0 0 0 0 0 0 0 o 0 0 0
Ty r1-py, *li(lﬂn,. Apy 0 0 0 0 0 0 0 0 0 ] 0 ] 0
—ip,

Ty 0 ’ -i-e - 0 2 0 0 0 0 0 0 0 0 o 0
I up an+  —p(d-py, Ap, 0 N 0 0 0 0 0 0

o RA—py  —dp —u 0 0 0
Tz o o 0 7 —A=0 4 0 0 0 0 0 o N 0 0 o

up au+ —#i(1-p, 4py 0

T2 0 0 ad—p,  —dp g 0 0 0 0 0 0 0 0
Moz 0 0 0 0 0 ¢ e 4 0 0 0 0 0 0 0 0
T 0 0 up qr+ —H(1-py A

13 0 0 0 P p 0 0 0 0 0 0 0
Tos 0 0 o 0 0 o g == ES 0 0 0 0 0 0

0 up au+ —n{l=py Apy 0
My 0 0 0 0 0 0 wep,  —dm—n 0 0 0 0
Mys 0 0 0 0 0 0 0 0 0 == % 0 0 0 0
0 0 0 ap au+ —a{1-py Apy )
T1s o 0 0 0 0 2 wl-py,  —dp,—u 0 ’
Tog o 0 0 0 0 o 0 ] 0 0 o 0 —7-7 T 0 0
0 0 np ap+ —H(1=py, Apy 0
Tie 0 0 0 0 0 0 v 0 0 BO-Py  —dp
7 0 0 0 0 0 0 0 0 0 0 0 0 D 8 —Ai-0 T
7 0 0 0 0 0 0 up qr+ —r(1-py,

my7 0 0 0 0 0 0 0 aliepy,  —dp. s

Figure 4.2: The generator matrix Q for 0 < < 7.

Therefore, note that



also satisfies

7.1=1,
7
Z T 1=1, (where 1 is a2 x 1 column vector of ones)
i=0
7
Z(ﬂ'oi + 7T12'> =1.

=0

From Figure 4.2, we can express the infinitesimal generator Q of the process {C(t), N,(t);t > 0}
in the following matrix block form:

where

- A
Lo= (u(l —p1) —[pl—=p)+ Apl])

- ([qu ;[:(Tﬁ]pl)] —[p(1 — pl)A+ Ap1 + M])
)
b= (8 pi) '

Then, based on the matrix analytic method proposed, we briefly provide some numerical ex-
amples in some cases that examine the sensitivity and the impact of the system parameters:
customers’ arrival rate ), service rate y, retrial rate 0, orbital search rate p and p; on @ =
(7o, 1, T2, T3, T4, T5, T, T7). The values of these parameters are chosen to satisfy the condition
of stability p < 1.

As it is shown in the Tables 4.1 and 4.2, we can make the following observations:
Tables 4.1 and 4.2 lists values of @ where the rates are all numbers.

The results in Tables 4.1 and 4.2 exhibit the predicted results, that is for each fixed value of p;,
P, A, 0 and p. It’s easy to notice that the normalizing condition is satisfied and closed to 1 for a
small fixed error ¢ = 10~7 during all the simulations.

Also, some performance measures of the system were calculated like the mean number of clients
in the orbit n,, and in the system 7.
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Table 4.1: The limiting distribution p = 0.2, € = 1077, p; = p = 0.25and 6 = 0.05.

7 fﬁiﬂﬂfﬁf p=02e=10",p —p=025,0 = 0.05
=T A=06]p=2 =12 | i=3,A=138

00 0.2278067 0.2213336 0.201507

7?0 10 0.2277973 0.1770669 0.1612055
7 To1 0.2517757 0.2398968 0.2361846
T11 0.08632308 0.08225033 0.08097755

. To2 0.09540963 0.1114358 0.1186414
2 T12 0.03271187 0.03820656 0.04067704
_ 03 0.03615519 0.05176367 0.05959652
73 13 0.01239606 0.01774754 0.02043309
. T4 0.0137009 0.02404503 0.02993681
T4 T14 0.00469745 0.008244008 0.01026405
= o5 0.005191914 0.01116929 0.01503801
s 15 0.001780084 0.00382947 0.005155887
7?6 06 0.00196746 0.005188309 0.007553964
16 0.0006745575 0.001778848 0.00258993
7?7 o7 0.0007455629 0.00241005 0.003794544
Ti7 0.0002556215 0.0008263028 0.001300986

ZZL:O(Won n 7T1n) _ 0.999389 0.9971926 0.9948569

_ 7 0.8713093 1.098573 1.234193

Tio =D o N X (Ton + Tin) =
A=3"_,nxmn 1.237945 1.428523 1.556797

+ ZZL:O(H + 1) X T1n
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Table 4.2: The limiting distribution for p = 0.6, € = 1077, p; =p = 0.5and 6 = 0.05.

7 fﬁiﬂﬂfﬁf p=06e=10",p = p=05,0=0.05
=T A=06]p=2 =12 | i=3,A=138

00 0.1645574 0.1428577 0.1348843

7?0 10 0.1974687 0.1714291 0.161861
7 To1 0.2369622 0.2285718 0.2241149
T11 0.0947848 0.09142862 0.08964587

. To2 0.1137416 0.1219046 0.1241249
T2 T12 0.04549662 0.04876181 0.0496499
_ 03 0.05459588 0.06501565 0.06874591
73 13 0.02183834 0.02600624 0.02749834
= To4 0.02620598 0.03467493 0.03807456
4 T14 0.01048238 0.01386996 0.01522981
p o5 0.01257885 0.01849325 0.0210874
> 15 0.005031535 0.007397295 0.008434952
p 06 0.006037835 0.009863044 0.01167915
6 16 0.002415132 0.003945214 0.004671654
- o7 0.002898156 0.005260278 0.006468434
7 Ti7 0.001159261 0.002104109 0.002587371
ZZL:O(Won n 7Tln) _ 0.9962546 0.9915836 0.9887584

7, = ZZL:O n x (7Ton n 7T1n) _ 1.193451 1.392432 1.472368

A=3"_,nxmn 1.572128 1.757374 1.831947

+ZZL:0(H + 1) X T1p =

71




The impact of the traffic intensity p.

The effect of the p rate on the performance measures is shown in Figures 4.3, 4.4 and 4.5 from the
values that are listed respectively on the Tables 4.3, 4.4 and 4.5.

Where we have plotted the two performance measures 7, and 7 by varying p. Firstly, for p = 1,2
and 3, while we fix § = 0.05,p; = 0.5 and p = 0.4 as it is shown in Figure 4.3. Then, for
p = 0.3,0.6 and 0.9, while we fix § = 0.05, x = 1 and p; = 0.25 as it is shown shown in Figure
4.4. Finally, for p; = 0.25,0.50 and 0.75, while we fix § = 0.05, 4 = 1 and p = 0.4 as it is shown
in Figure 4.5.

Table 4.3: Performance measures for § = 0.05,p = 0.4 and p; = 0.5.

Figure 4.3: i, and 7 by varying (p, ). (# = 0.05,p = 0.4 and p; = 0.5)

72

pn=1 p=2 p=3
P T, n Mo n
0.1 | 0.01798412 | 0.07975569 0.006185808 | 0.02783613
0,2 ] 0.05948657 | 0.1727642 0.02109934 | 0.063067
0.3 | 0.1130221 | 0.2684275 0.04116091 | 0.1020075
0.4 | 0.1730014 | 0.3627735 0.06431509 | 0.1426268
0.5 | 0.2369006 | 0.4548493 0.08933933 | 0.1837838
0.6 | 0.3037888 | 0.5450339 0.1154906 0.224838
0.7 1 0.3735843 | 0.6042774 0.1423129 0.2654407
0.8 | 0.4466815 | 0.7237702 0.1695279 0.3054169
0.9 | 0.5237638 | 0.8148063 0.1969697 0.3446969
—————— p=2 ./.
s p=3 —
U
n, o‘—’/ -
3 - B DGR
r{:';_:;;:;;:’;;,;;:::::Iiii::7“:::::' 77777777777777777
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Table 4.4: Performance measures for # = 0.05, 4 = 1 and p; = 0.5.

p=0.3
P No n
0.1 | 0.01868548 | 0.08042882
0,2 | 0.06359531 | 0.1765785
0.3 | 0.1235294 | 0.2779412
0.4 | 0.1925391 | 0.3801666
0.5 | 0.2678567 | 0.4821424
0.6 | 0.3485816 | 0.5843894
0.7 | 0.434935 0.6882624
0.8 | 0.52786 0.7955802
0.9 | 0.6288068 | 0.9084593

|
S
00 02 04 06

3
0.6

02

Figure 4.4: i, and 72 by varying (p, p). (9 = 0.05, 4 = 1 and p; = 0.5)

p=0.6

p=0.9
Mo n

0.01514233 | 0.07702838
0.04496505 | 0.1592911
0.07932692 | 0.2379808
0.1149034 | 0.3112945
0.1505352 | 0.3793488
0.185862 0.4427889
0.2208431 | 0.5023577
0.2555697 | 0.558758
0.2901855 | 0.6126154
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Table 4.5: Performance measures for § = 0.05, 4 = 1 and p = 0.4.

p1 = 0.25 p1 = 0.50 p1=0.75
p Mo n Mo n
0.1 | 0.01800423 | 0.09134743 0.01066757 | 0.06426655
0,2 | 0.05692669 | 0.1907704 0.03722117 | 0.1368242
0.3 | 0.1052793 | 0.2888061 0.07336888 | 0.2115492
0.4 | 0.1586017 | 0.3832211 0.1149705 | 0.2851227
0.5 | 0.2152248 | 0.4741951 0.1594666 | 0.3559984
0.6 | 0.2746994 | 0.5627093 0.2053645 | 0.4236635
0.7 1 0.337157 0.649982 0.251858 0.4881692
0.8 | 0.4030375 | 0.7372791 0.2985692 | 0.549852
0.9 | 0.472965 0.825867 0.3453838 | 0.6091776
3 ne ;/:/f
e
) O; OL O; Og
o p

£l
02 04 06 08

Figure 4.5: The effect of p and p; on 71, and 7 by varying (p, p1). (¢ = 0.05, 4 = 1 and p = 0.4)
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We observe that, for several choices of 1, p and p;, the main number of customers in orbit 72, and
the system 7 are strictly increasing function of p.

The impact of the constant retrial rate 6.

The influence of the constant retrial rate § on 7, and 7 is illustrated in Figures 4.6, 4.7 and 4.8

respectively from Tables 4.6, 4.7 and 4.8.

We keep p = 0.3, then we fix (p1, p) = (0.5,0.4) and we plot 7, and 7 First, for x = 1,2 and 3
as it is shown in Figure 4.6. Then, we fix (i, p1) = (1,0.25) and we plot 7z, and 7@ for p = 0.3, 0.6
and 0.9 as it is shown in Figure 4.7. Finally, we fix (p, p) = (1,0.4) for p; = 0.25,0.50 and 0.75
as it is shown in Figure 4.8.

Table 4.6: Performance measures for p = 0.3, p; = 0.5 and p = 0.4.

pw=1 =2 pw=3
0 T, n Tl n
0.1 | 0.04485799 0.1590084 0.01573813 0.05782496
0,5 | 0.01154696 0.1282807 0.004032137 0.04646526
1 0.005987809 0.1231601 0.002089375 0.0445803
) 0.001234189 0.1187832 0.0004303909 | 0.04297075
10 | 0.0006194623 | 0.1182173 0.0002160035 | 0.04276275
50 | 0.0001242739 [ 0.1177615 0.00004333097 | 0.04259523
100 | 0.00006215831 | 0.1177043 0.00002167365 | 0.04257422
o p=1
2] ¢
.
T, § N ;,'\ """""" u=3
§ : ’\‘1\‘3;‘:.3 _________________________________ . .
S | | | \ | \
0 20 40 60 80 100
a
p=1
,,,,,, p=2
e_o. e b3
N |
n g $“*0— . . .
° i; 2IO 4IO e 6‘0 BID 1{;0

Figure 4.6: i, and 7 by varying (6, ). (p = 0.3,p; = 0.5 and p = 0.4)
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Table 4.7: Performance measures for p = 0.3, u = 1 and p; = 0.25.

p=0.3 p=0.6
0 T, n
0.1 | 0.07330814 0.2597649
0,5 | 0.01808398 0.2098346
1 0.009315055 0.2019335
5 0.001909188 0.1952663
10 | 0.000957633 0.19441
50 | 0.0001919905 | 0.1937211
100 | 0.00009602519 | 0.1936348
Table 4.8: Performance measures for p = 0.3,y = 1 and p
0 Mo n
0.1 | 0.0679662 0.2549222
0.5 | 0.01774042 0.2095249
1 0.009223056 0.2018506
5 0.001905293 0.1952628
10 | 0.0009565825 | 0.1944091
50 | 0.000191951 0.1937211
100 | 0.00009601532 | 0.1936348

p=20.9

N, n
0.04982115 0.2384934
0.01620144 0.2081378
0.008789038 0.2014598
0.001886054 0.1952455
0.0009517083 | 0.1944047
0.000191754 0.1937209
0.00009596598 | 0.1936347

= 0.4.

Mo n
0.04181842 0.1834722
0.009421796 0.1546991
0.004786736 0.150587
0.0009698446 | 0.1472016
0.0004857151 | 0.1467722
0.00009726821 | 0.1464277
0.00004864208 | 0.1463846

We observe that the three curves of 7, seem to be undistinguished. However, the tail of the

performance measures decrease and become heavier as far as 6 increases.
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Figure 4.7: i, and 7 by varying (0, p). (p = 0.3, x = 1 and p; = 0.25)
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Figure 4.8: The effect of  and p; onn, and 1, for p = 0.3, = 1 and p = 0.4.
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4.2 Numerical analysis for a M /M /1 queue with interrup-
tion service and retrials according to a linear retrial pol-
icy

In this section, the present model includes a generalisation of the model treated in chapter 2, for
a retrial queuing system with a single server and infinite capacity of the orbit and the queue, but
according to a linear retrial policy a(1 — ¢y;) + 70, instead of a constant retrial policy, as it is
shown in Figure 4.9.

Retrial Queue (Orbite)

| P1
af1—dg;)+30. T

l 6 (1-p4)
&8 —(D)——&

Queue

Ser\'er Departures

Figure 4.9: A typical queuing system.

The system state at time ¢ can be described by the process x(t) = {C(t), N,(t), No(t);t > 0},
where C(t) is the state of the server and V,(¢) denotes how many clients are in orbit and N,(t)
denotes how many clients are in the queue at time ¢.

Under the above assumptions the process x(t) = {C(t), Ny(t), No(t);t > 0} is Markovian with
the lattice semi-strip S = {O, 1} x N x N as the state space.

The set of statistical equilibrium equations for the probabilities 7. ; ; (c € {0,1},¢ > Oand j > 0),
have the following expressions:

>\7T0,0,0 = M(l - p1)7T1,0,0;

Amoi0 = (1 = p1)m,i0, Vi 2> 1 (4.5)

AN+ Ap1 4+ p(1 = p1) b0 = ATic1,0 + AT g0, Vi > 1 (4.6)
A+ a1l = do;) + j0)mo0; = Apr1mio-1 + (1 = p1)mio,, Vi > 1 (4.7)
{A+Ap1 4+ p(1 = p1)tmie; = Amoo, + Amo; + [a(l — dos) + 0m00,5+1, V5 > 05 (4.8)
Ao, = Apimig—1 + (1 = pi)myg, Vi > 1,V5 > 1 (4.9)

{N+Ap1 + p(1 = p1) b = AMoigr,j + Aoy, Vi > 1,V5 > 1; (4.10)

with the normalization equation > ;- > 50 T0,ij + D ;>0 2_j50 T4 = | and the global traffic
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A(1+p1)
u(l=p1)°

intensity given by p = p, + p, =

To illustrate the method, it is useful to start by rewriting the equations in terms of a “generator
matrix”, Q. By ordering the states as

S ={(0,0,0),(1,0,0),...,(0,0,7), (1,0, 7), (0,1,0), (1,1,0), ..., (0,1, 5), (1, 1, 5), ...,
(0,4,0),(1,4,0),...,(0,4,7), (1,2,7) }.

We expressed the infinitesimal generator Q of the process X (t) = {C(t), N,(t), No(t);t > 0} in
the following matrix block form:

Lo F

B L F

Q= B L F

A A 0 0 0 0 0 ...0
pl—p1) C gy 0 0 0 0 ...0
0 R A A 0 00 ..0
Lo = 0 0 u(l—p)) C M1 0 0 ... 0
0 0 0 R A X0 ..0
A 0 0 0 0 0 0 ...0
pl—p1) C  Apy 0O 0 0 0 ...0
0 0 A 0 0 0 0 ...0
L= 0 0 u(l—p)) C M1 0 0 ... 0
0 0 0 0 A 0 0 ...0

Where A = —(A+[a(1—6o;) +376]), C = —[A+Ap1 +p(1 —p1)] and R = a1 —dy;) +706.

O OO OO
o O OO >
O OO OO
O O > O O
S OO OO
> O O O O
O O O O O
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O O OO x> O
O O OO oo
SO O OO
O O OO oo
> O O O O O
OO OO oo

Then, we concentrate on the computation of the limiting distribution 7 = {7, ;,0 < ¢ < 1,0 <
i < 2,0 <j <3}, by using the Matrix-analytic Method and fixing the values of all the rates as it
is listed in the Table 4.9, where we take p = 0.35, u = 1, A = 0.21,0 = 0.50, « = 0.05,p; = 0.25
and e = 1077,

Table 4.9: The limiting distribution of the system.

The limiting distribution | p = 0.35, u = 1,e = 1077, 0 = 0.5, a = 0.05, p; = 0.25 X\ = 0.21
000 0.3572064
100 0.1428824
Too1 0.1144135
101 0.02172484
T002 0.01508984
T102 0.002705245
To03 0.00182629
103 0.0003231911
To10 0.1305525
T110 0.05222101
To11 0.03334282
T111 0.004508349
012 0.003336225
112 0.0004909195
To13 0.0003820957
113 5.763684 x 107°
T020 0.04694554
120 0.01877822
To21 0.009558205
121 0.001080811
022 0.0006956546
T122 9.454485 x 107°
023 7.070254 x 107°
123 1.045918 x 10~°

> o2 o(moij + i) 0.9582975

Next, we present some numerical examples to visualize the performance of n and the effect of
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some rates on 7, first by varying the pair (p, p1), then by varying the pair (6, p;) and finally by

varying the pair («, p).

Figure 4.12: nn by varying the (o, p;).

Z 3
i) o P B Z Znu,-j- + 1y T
i=0 j=0
0.25 0.9705365 0.9860876 p=025
0.30 [ 0.50 0.9828092 0.6865405 R=078
0.75 0.9894097 0.8091561
0.25 0.9306556 1.001155 © ],
0.45 | 0.50 0.5853329 0.3737411 S e
0.75 0.0771188 0.6053235 — T
0.1 | 0.05 0.25 0.8739677 0.9823651 n e
0.60 | 0.50 0.8969764 0.3808211 i e,
0.75 0.9597357 0.5428684 Tl
0.25 0.80271 0.9305052 .
0.75 | 0.50 0.0703247 0.8872514 = | : : : : N *
0.75 0.9355151 0.333578
0.25 0.7196339 0.8169858 03 04 05 06 07 08 08
0.90 | 0.50 0.8783594 0.5760105 p
0.75 0.8097168 0.02688644
Figure 4.10: 2 by varying the (p, p1).
pla 8 ples n
1 Z Ty + My -
i=0 j=0 - B
0.5 0.9344017 1.091594 n
0.6 0.9338431 1.00707 ElN
0.75 0.25 0.9338367 09397666 | | ..
1 0.9342661 0.85822 & T
0.5 0.963817 0.656832 Boo0s0
0.6 0.9642875 0.5917391 S
0.45 | 0.05 0.75 0.50 0.9650411 0407881 | | T *
1 0.9663478 0.3458103 o
0.1 0.9771188 0.6953235 ° p=07s
0.25 0.9779121 0.448B867 o .
0.50 | 0.75 0.9802112 0.1313738 e w w T w w
0.60 0.9810887 0.01772057 o ° v, " 0 "
Figure 4.11: 7 by varying the (0, p;).
p|o a | p[Ss _
i=0 j=0 \
5.00 0.9668304 1.807303
10 0.25 0.9549%28 1.47293 © \\
50 0.948623 1.205207 -
100 0.9455462 0.9920366 . —~_
5.00 0.9742141 1.340501 - T~
0.45 | 0.50 10 0.50 0.9731097 1.238351 T _
50 0.9714967 1.0509 o p=0.50 hmew
100 0.9700448 0.8627342 =075 T
5.00 0.0833611 1.158131 T i
10 0.75 0.9832609 1.098081 B B
50 0.9828496 09864828 | T
100 0.9823433 0.8840413 ‘ ‘ ‘ ; :
20 10 « 60 80 100

From the above results that are listed on the last three tables and illustrated on the last three
figures 4.10, 4.11 and 4.12, we can reveal the following observations:

1. n decreases as p increases, even when 6 and « increases too.

2. 7 appears to be small for p; = 0.75 as compared to the rest values of p; when p; = 0.50
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and p; = 0.25.
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General conclusion

In this work, we have presented a detailed approximation of the stationary distribution for a
single-server Markovian queueing model with several parameters, by using the matrix-analytic
method.

The present investigation includes many features simultaneously such as (1) retrials according
to retrial linear policy; (2) Interruption service; (3) Orbital search. We note that all these realistic
assumptions have not been gathered together in the existing literature.

Our study has two main objectives. The first one is to link the corresponding retrial queues with
interruption service under several retrial policies. Our analysis applies to the different retrial poli-
cies such as a constant retrial policy, classical retrial policy or linear retrial policy. Furthermore,
includes the classical queue. That is why our model can be considered as a generalized version of
many existing queuing models associated with many practical situations. The second objective is
to introduce orbital search in retrial queueing models which allows minimizing the idle time of
the server. If the holding costs and cost of using the search of clients are introduced, the obtained
results can be used for the optimal tuning of the parameters of the search mechanism.

The analytical results have been obtained by using the ()-matrix (infinitesimal generating matrix)
technique. We have obtained approximated values of the steady-state distribution and some per-
formance measures of the model. Moreover, some numerical results are presented to demonstrate
how the different parameters of the considered models influence the behaviour of the system.
Some special cases are illustrated

The work carried out during this thesis and the results obtained open up a range of prospects.
For our future work, we plan to direct our research in the following directions:

« This investigation can be further extended for systems with set-up times, server vacations
(breakdowns) or by incorporating the batch arrival of primary clients.

« More broadly, we are optimistic that techniques similar to the matrix-analytic method could
help analyze an extremely broad class of multiserver systems. These results are only treated
for single-server systems. Nothing is known for the M /M /k retrial models with interrup-
tion service and orbital search in the case of k > 2 servers.
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Appendix
Some numerical analysis programs in
R

In Chapter 2, for u = 2,e = 1077, p; = 025, p = 0.2, A = 1.2,
0 = 0.05, we have:

10 <-¢(-1.2,1.5,1.2,-1.8)

L0 <- matrix(l0,2,2)

f <- ¢(0,0.3,0,0)

F <- matrix(f,2,2)

b <- ¢(0,0,0.05,0.5)

B <- matrix(b,2,2)

1 <-¢(-1.25,3,1.2,-3.8)

L <-matrix(1,2,2)

INV <- solve(L)

R1 <--F*INV

R2 <- -(F+R1 * R1* B)* INV
el <- R2-R1

R3<- -(F+R2 * R2* B)* INV
e2<- R3-R2

R4<- -(F+R3 * R3* B)* INV
e3<- R4-R3
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R5<- -(F+R4 * R4 * B)* INV
e4<- R5-R4

R6<- -(F+R5 * R5 * B)* INV
e5<- R6-R5

R7<- -(F+R6 * R6 * B)* INV
e6<- R7-R6

R8<- -(F+R7 * R7* B)* INV
e7<- R8-R7

R9<- -(F+R8 * R8* B)*INV
e8<- R9-R8

R10<- -(F+R9 * R9* B)* INV
e9<- R10-R9

R11<- -(F+R10 * R10* B)* INV
e10<- R11-R10

R12<- -(F+R11 * R11* B)* INV
ell<- R12-R11

R13<- -(F+R12 * R12* B) INV
el2<- R13-R12

R14<- -(F+R13* R13* B)* INV
el13<- R14-R13

R15<- -(F+R14 * R14* B)* INV
eld<- R15-R14

R16<- -(F+R15 * R15* B)* INV
el5<- R16-R15

R17<- -(F+R16 * R16* B)* INV
el6<- R17-R16

R18<- -(F+R17 * R17* B)* INV
el7<- R18-R17
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R19<- -(F+R18 * R18* B)* INV
e18<- R19-R18

R20<- -(F+R19 * R19* B)* INV
e19<- R20-R19

R21<- -(F+R20 * R20* B)* INV
e20<- R21-R20

R22<- -(F+R21 * R21* B)* INV
e21<- R22-R21

R23<- -(F+R22 * R22* B)* INV
e22<- R23-R22

R24<- -(F+R23 * R23* B)* INV
e23<- R24-R23

R25<- -(F+R24 * R24* B)* INV
e24<- R25-R24

R26<- -(F+R25 * R25* B)* INV
e25<- R25-R24

R27<- -(F+R26 * R26™ B)* INV
e26<- R27-R26

R28<- -(F+R27 * R27* B)* INV
e27<- R28-R27

PHI<- L0O+R28* B

d<- diag(1,2,2)

o<-¢(1,1,1,1)

O<- matrix(0,2,1)

i<-d-R28

I<- solve(i)

psi<-1*0

a<- ¢(1,0,0,0)
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A<- matrix(a,1,2)

Z<- ¢(1,4.397583,1.2,-1.5)

M<- matrix(Z,2,2)

T<- solve(M)

po<-A*T

pl<-p0*R28

p2<- p0 * R28 * R28

p3<- p0 * R28 * R28 * R28

p4<- p0 * R28 * R28* R28 * R28

p5<- p0 * R28 * R28* R28* R28* R28
p6<-p0 * R28 * R28* R28* R28" R28 * R28
p7<- p0 * R28 * R28" R28* R28* R28 * R28* R28

In Chapter 3, for p = 1, € = 1077, p1 = 0.25, p = 0.4, p = 0.3,
0 = 0.05, we have:

rho<-0.3

mu<-1

p<-0.4

theta<- 0.05

pf<-0.25

a<- mu *(1-pf) + (1-p) * mu
lambda<- rho*(1-pf)/(1+pf)
b<- (-lambda - theta)

q<- (1-pf)

x<- p'mu

y<- lambda*pf

z<- -lambda

t<-mu”q
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A<-(-t+z-y)
B<- (-t +z -y - mu)
C<-(-t+z-mu)

10<- ¢(-lambda,mu *(1-pf),0,0,0,0,0,0, lambda,A theta,p*mu,0,0,0,0, 0,lambda*pf,b,a,0,0,0,0, 0,0,lambda,B,theta,
pmu,0,0, 0,0,0,lambda*pf,b,a,0,0, 0,0,0,0,Jambda,B,theta,p*mu, 0,0,0,0,0,Jlambda*pf,b,a, 0,0,0,0,0,0,]Jambda,C)

L0<- matrix(10,8,8)

f<-¢(0,0,0,0,0,0,0,0, 0,lambda,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,lambda,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,Jambda,0,0,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,lambda)

F<- matrix(f,8,8)

b<-¢(0,0,0,0,0,0,0,0, lambda,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,lambda,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,lambda,0,0,0,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0,Jambda,0)

Bo<- matrix(b,8,8)
a<- mu *(1-pf) + (1-p) * mu
b<- (-lambda - theta)
q<- (1-pf)

x<- p‘mu

y<- lambda*pf

z<- -lambda
t<-mu”q
A<-(-t+z-y)

B<- (-t +z -y - mu)
C<-(-t+z-mu)

1<- ¢(-lambda,mu*q,0,0,0,0,0,0, 0,A,0,p*mu,0,0,0,0, 0,lambda*pf,-lambda,a,0,0,0,0, 0,0,0,B,0,x,0,0, 0,0,0,y,z,a,0,0,
0,0,0,0,0,B,0,x, 0,0,0,0,0,Jambda*pf,-lambda,a, 0,0,0,0,0,0,0,C )

L<- matrix(l,8,8)

INV<- solve(L)
Ri<--F*INV

R2<- -(F+R1 * R1* Bo)* INV
el<- R2-R1

R3<- -(F+R2 * R2* Bo)* INV
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e2<- R3-R2

R4<- -(F+R3 * R3* Bo)" INV
e3<- R4-R3

R5<- -(F+R4 * R4* Bo)* INV
e4<- R5-R4

R6<- -(F+R5 * R5* Bo)* INV
e5<- R6-R5

R7<- -(F+R6 * R6* Bo)* INV
e6<- R7-R6

R8<- -(F+R7 * R7* Bo)* INV
e7<- R8-R7

R9<- -(F+R8 * R8* Bo)* INV
e8<- R9-R8

R10<- -(F+R9 * R9* Bo)* INV
e9<- R10-R9

R11<- -(F+R10 * R10* Bo)* INV
el0<- R11-R10

R12<- -(F+R11 * R11* Bo)* INV
ell<- R12-R11

R13<- -(F+R12 * R12* Bo)* INV
el2<- R13-R12

R14<- -(F+R13 * R13* Bo)* INV
el3<- R14-R13

R15<- -(F+R14 * R14* Bo)*INV
el4<- R15-R14

R16<- -(F+R15 * R15* Bo)* INV
el5<- R16-R15

R17<- -(F+R16 * R16™ Bo)* INV
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el6<- R17-R16
R18<- -(F+R17 * R17* Bo)* INV
el7<- R18-R17
R19<- -(F+R18 * R18* Bo)* INV
el8<- R19-R18
R20<- -(F+R19 * R19* Bo)* INV
e19<- R20-R19
R21<- -(F+R20 * R20* Bo)* INV
e20<- R21-R20
R22<- -(F+R21 * R21* Bo)* INV
e21<- R22-R21
R23<- -(F+R22 * R22* Bo)* INV
e22<- R23-R22
R24<- -(F+R23 * R23* Bo)* INV
e23<- R24-R23
R25<- -(F+R24 * R24* Bo)* INV
e24<- R25-R24
R26<- -(F+R25 * R25* Bo)* INV
e25<- R26-R25
R27<- -(F+R26 * R26™ Bo)* INV
e26<- R27-R26
R27<- -(F+R26 * R26* Bo)* INV
e26<- R27-R26
R28<- -(F+R27 * R27* Bo)* INV
e27<- R28-R27
R29<- -(F+R28 * R28* Bo)* INV
e28<- R29-R28
R30<- -(F+R29 * R29* Bo)* INV
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e29<- R30-R29

R31<- -(E+R30 * R30* Bo)* INV
e30<- R31-R30

R32<- -(F+R30 * R30* Bo)* INV
e31<- R31-R30

R33<- -(F+R32 * R32" Bo)* INV
e32<- R33-R32

R34<- -(F+R33 * R33* Bo)* INV
e33<- R34-R33

R35<- -(F+R34 * R34* Bo)* INV
e34<- R35-R34

R36<- -(F+R35 * R35* Bo)* INV
e35<- R36-R35

R37<- -(F+R36 * R36* Bo)* INV
e36<- R37-R36

R38<- -(E+R37 * R37* Bo)* INV
e37<- R38-R37

PHI<- L0+R14 * Bo

d<- diag(1,8,8)
o<-¢(1,1,1,1,1,1,1,1)

O<- matrix(0,8,1)

i<-d-R14

I<- solve(i)

psi<-1*0

a<- ¢(1,0,0,0,0,0,0,0)

A<- matrix(a,1,8)

PHI[1,1]<- psi[1,1]

PHI[2,1]<- psi[2,1]
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PHI[3,1]<-psi[3,1]
PHI[4,1]<-psi[4,1]
PHI[5,1]<-psi[5,1]
PHI[6,1]<-psi[6,1]
PHI[7,1]<-psi[7,1]
PHI[8,1]<-psi[8,1]
T<- solve(PHI)
po<-A*T
pl<-p0 " R14
p2<- p0 * R14* R14
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