
 

   CONTROL OF HIERARCHICAL MEAN FIELD TYPE GAMES 

      
 

 

BADJI MOKHTAR-ANNABA 

                 UNIVERSITY                                       

  جامعة جيـاب   رتامخ

UNIVERSITE BADJI MOKHTAR 

                 ANNABA 
 

Faculty of Sciences 

Department of Mathematics 

  -عنابة-

 

Year : 2023/2024 

  
 

THESIS 

Presented with a view to obtaining the doctorate degree 

 

Branch 

Applied Mathematics 

 

Speciality 

ACTUARIAL SCIENCE  

   

                                          By 

Zahrate El Oula FRIHI 

SUPERVISOR :   Mohamed Riad REMITA            Prof.       ENSIA. ALGER 

In front of the jury 
 

PRESIDENT :      Fatima Zohra BENMOSTEFA    Prof.       U.B.M. ANNABA              

EXAMINER :       Med Cherif BOURAS                  Prof.      U.B.M. ANNABA 

EXAMINER :       Halim ZEGHDOUDI                   Prof.       U.B.M. ANNABA 

EXAMINER :       Abdelali EZZEBSA                     MCA.     U. GUELMA 

 

 وزارة التعليم العالي والبحث العلمي   



 

  CONTRÔLE DES JEUX DE TYPE CHAMP MOYEN HIÉRARCHIQUE 

      
 

 

BADJI MOKHTAR-ANNABA 

                 UNIVERSITY                                       

  جامعة جياـب   رتامخ

UNIVERSITE BADJI MOKHTAR 

                 ANNABA 
 

Faculté des Sciences 

Département de Mathématiques 

  -عنابة-

 

Année : 2023/2024 

  
 

THÈSE 

Présentée en vue de l’obtention du diplôme de Doctorat 

 

 

Filière 

Mathématiques Appliquées 

 

Spécialité 

ACTUARIAT 

   

                                         Par 

FRIHI Zahrate El Oula 

DIRECTEUR DE THÈSE : REMITA Mohamed Riad    Prof.     ENSIA. ALGER 

Devant le jury 
 

PRESIDENT :              BENMOSTEFA Fatima Zohra     Prof.     U.B.M. ANNABA  

EXAMINATEUR :      BOURAS Med Cherif                   Prof.     U.B.M. ANNABA 

EXAMINATEUR :      ZEGHDOUDI Halim                    Prof.     U.B.M. ANNABA 

EXAMINATEUR :      EZZEBSA  Abdelali                     MCA.   U. GUELMA 

 

 وزارة التعليم العالي والبحث العلمي   



To my dear mother Menidjel Zakia
and my brother Frihi Alla Eddine.



Abstract

This thesis focuses on solving hierarchical leadership mean-field-type games with
jump diffusion state equations and two different performing functionals using two
different methods, concluding with a numerical analysis of the impact of the hierarchy
on the final solution. In Paper A, we provide a solution for a hierarchical mean-field
type optimal control problem with polynomial performing functional in three forms
using the dynamic programming principle method. The first form is a one-level mean-
field type game when the player acts simultaneously without information differences.
The second form is a Stackelberg mean field type game, where the players are divided
into two groups in two levels, one acting first, then the other reacting. The last case
is a fully hierarchical mean-field type game when the number of hierarchy levels is
equal to the number of players. Numerical investigation proves the existence of a
significant effect of the hierarchy form on the optimal performing functional. In paper
B, we are interested in the hierarchical mean-field type optimal control problem of
electricity production in a smart grid energy market composed of n − 1 prosumers
with n ≥ 2 and one major producer, the market leader. These n agents impose
their production strategies sequentially in a hierarchal order. The market leader is
at the top of the hierarchy, and the other prosumers follow him at separate levels
according to their production capacity. We model the problem by a jump-diffusion
stochastic differential state equation and a quadratic cost functional. The solution
is established using the direct method, and two numerical scenarios are considered.

Keywords— Mean-field-type hierarchical control, Stackelberg mean field type game,
polynomial objective functional, electricity production control, energy market.
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ᄭᄟأ؇دஓ୾ ᄭᄥټᆙᆘ اይዧأٴ۰ ᄭᄟ؇༡ ۋ٭ت ሒᇃ٭ڎاৎ৊ا اৎ৊ٺިݿޔ َިع ݆݁ ا୒ୖݠ݁٭۰ ا৙৑ܳأ؇ب دراݿ۰ و ༡ܭ আॻ༟ ۰༡ޗݠو৙৑ا ۱ڍه ஼ߵணߙ
و ᄭᄥأ݁ټ وّޚٴ٭ݑ ඔ൹ٺܹڰٺෛ੼ ඔ൹لگٺ ޗݠ ࿓؆ݿٺ༱ڎام و۱ڍا ඔ൹ٺܹڰෛ੼ ඔ൹ࢻࣖاܳٺ ᄭᄥټᆙᆘ ا৙৑داء ᄭᄟدا و ًگڰݞات ۰ਃಮ؜ލިا ّڰ؇ݪܹ٭۰
ુળ༲اܳٺ ᄭႍၽލৎ৊ ً ఈః༡ ڢڎ݁ٷ؇ أ، اܳٴۜټ٭۰ اܳިرڢ۰ ሒᇭ ይዧأٴ۰. ሒᆶ؇ዛዊܳا اࠍ੆ܭ আॻ༟ ሒᇧୖݠ୒ا اܳྥފܹފܭ ଫଃٔ؊ّ ᄴᄟراݿ۰ ༟ڎدل۰ ොູܹ٭ఈఃت
۰෠੼ଫଊܳا ݁ٴڎأ لگ۰ ޗݠ ࿓؆ݿٺ༱ڎام ৖৑؇༡ت ۰ٔఈఃܳټ اࠍ੆ڎود ܋ټଫଃة أداء ᄭᄟدا ؕ݁ ሒᇧୖݠ୒ا ሒᇃ٭ڎاৎ৊ا اৎ৊ٺިݿޔ َިع ݆݁ ا৙৑݁ټܭ
ඔ൹؜ٴఈዳዧا ႟၍ ොຬڎد ۋ٭ت وا༡ڎ ݁ފٺިى ذات ሒᇃ݁٭ڎا ݁ٺިݿޔ َިع ݆݁ ܳأٴ۰ ؜݆ ؜ٴ؇رة ሌᇿو৙৑ا ᄭᄟ؇੆اࠍ ا਍ಱᄴᄟ؇݁٭ܝ٭۰.
اৎ৊ٺިݿޔ َިع ݆݁ ݿٺ؇ၯ၍ٴଫଃغ ܳأٴ۰ ሒሃ ۰ਃ಻؇اܳټ ᄭᄟ؇੆اࠍ اৎ৊أߺࠊ۰݁. ሒᇭ إۊٺఈఃڣ؇ت وۏިد دون وا༡ڎ آن ሒᇭ ܾዛው٭౯౏ళاଫଐإݿ
ً؇ෂَීد. ّگިم و ਐಾڰ؇༟ܭ اරඝ৙৑ى ቕ቉ ،ً৖৑أو ّگݠر ؇ᆇᆅڎ༡أ ،ඔ൹ل ݁ފٺި আॻ༟ ඔ൹ި؜ٺᆇ୞୘ ሌᇿإ ඔ൹؜ٴఈዳዧا ّگފࡗࡲ لࡤࡲ ۋ٭ت ሒᇃ٭ڎاৎ৊ا
ا୒ୖݠم ل؇ت ݁ފٺި ༟ڎد لܝިن ؜ٷڎ݁؇ أي Ⴄ၍݁ܭ ሒᇧ۱ݠ ߙߵ྘ོص ذات ݁٭ڎان ݁ٺިݿޔ َިع ݆݁ ܳأٴ۰ ሒሃ اଫଃ༠৙৑ة ᄭᄟ؇੆اࠍ
ሒᇭ .আॻټৎ৊ا ا৙৑داء ᄭᄟدا আॻ༟ ሒᇧୖݠ୒ا اܳྥފܹފܭ ႟ၽܳލ ܾዛᔻ ଫଃٔ؊ّ وۏިد اܳأڎدي اܳٺޚٴ٭ݑ أཿྟب .ඔ൹؜ٴఈዳዧا ܳأڎد ؇ً࿌݁ފ؇و
ذ܋٭۰ ᄎჼނٴ ሒᇭ ۰༶ٷٺৎ৊ا اܳـ۳᠌ݠً؇ء ᆇᅀܳ٭۰ ሒᇧୖݠ୒ا ሒᇃ٭ڎاৎ৊ا اৎ৊ٺިݿޔ َިع ݆݁ ا৙৑݁ټܭ ુળ༲اܳٺ ᄭႍၽލஓ୾ ዛኡࡤࡲ ب، اܳٴۜټ٭۰ اܳިرڢ۰
ᄎც๤དྷܳا وا༡ڎ، ๴ཏ྘ཬر و݁ٷٺھ n ≥ 2 ؕ݁ وا༡ڎ آن ሒᇭ ඔ൹ܹـܝዛው݁ފ و ඔ൹༶݁ٷٺ n − 1 ݆݁ ਐಱܝިن اᄳᄟي اܳޚ؇ڢ۰ ܳފިق
اܳފިق ڢ؇ࢱࣖ لگؕ .ሒᇧ۱ݠ ߙߵ྘ོص ሒᇭ ً؇ܳྥފܹފܭ ܾዛኞ اࠍ੅؇ݬ۰ اਐ಻৕৑؇ج اݿଫଐا౯౏ళ٭؇ت وভ঒ܭ n لڰݠض اܳފިق. ሒᇭ اෂීاࢱࣖة
َگިم اਐ಻৕৑؇ۏ٭۰. ܾዛኤܳگڎر وڣگً؇ ا୒ୖݠم ݆݁ ᄭᄥ݁ٷڰݱ ل؇ت ݁ފٺި ሒᇭ اරඝ৚৑ون اৎ৊ٷٺ۠ިن و཯ྥٴأ۬ ،ሒᇧୖݠ୒ا اܳྥފܹފܭ আॻ༟أ ሒᇭ
ً؇ݿٺ༱ڎام ا৙৑݁ټܭ اਐ಻৕৑؇ج إ෠ຬ؇د ቕቆ ਃಸأ٭۰. ߙߵ ၯၽّڰ۰ ᄭᄟࢻࣖا و ڢڰݞات ذات ۰ਃಮ؜ލިا ّڰ؇ݪܹ٭۰ ᄭᄟ؇༡ ᄭᄟأ؇دஓ୾ ᄭႍၽލৎ৊ا റണ೴ټ٭ܭ

.ඔ൹ڎدل༟ ඔ൹۱ިل ݿ྘ٷ؇ر ਐಸޚٴ٭ݑ ሒᇧୖݠ୒ا اܳྥފܹފܭ ଫଃٔ؊ّ دراݿ۰ و اৎ৊ٴ؇๤ཇة لگ۰ اܳޚݠ

أداء ᄭᄟدا ،ሒᇃ݁٭ڎا ݁ٺިݿޔ َިع ݆݁ ݿٺ؇ၯ၍ٴଫଃغ ܳأٴ۰ ،ሒᇃ݁٭ڎا ݁ٺިݿޔ َިع ݆݁ ሒᇧ۱ݠ ુળොູ ڲء׫ոؼמ١--- ոஈ࿦྾ت
اܳޚ؇ڢ۰. ݿިق اܳـ۳᠌ݠً؇ء، إਐ಻؇ج ሒᇭ ુળ༲اܳٺ اࠍ੆ڎود، ܋ټଫଃة
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Resumé

Cette thèse se focalise sur la résolution des jeux de leadership hiérarchiques de type
champ moyen avec des équations d’état différentielles stochastique avec saut et deux fonc-
tionnelles de performance différentes en utilisant deux méthodes de résolution différentes,
afin de conclure par des analyses numériques sur l’impact de la hiérarchie sur la solution
finale. Dans l’article A, nous fournissons une solution pour un problème de contrôle opti-
mal de type champ moyen hiérarchique avec une fonctionnelle de performance polynomiale
sous trois formes en utilisant la méthode de programmation dynamique. La première forme
est un jeu de type champ moyen à un seul niveau lorsque les joueurs agissent simultané-
ment sans différences d’information. La deuxième forme est un jeu de Stackelberg de type
champ moyen, où les joueurs sont divisés en deux groupes à deux niveaux, l’un agissant en
premier, puis l’autre réagissant. Le dernier cas est un jeu de type champ moyen entière-
ment hiérarchique où le nombre de niveaux de la hiérarchie est égal au nombre de joueurs.
L’étude numérique prouve l’existence d’un effet significatif de la forme de l’hiérarchie sur
la fonction de performance optimale. Dans l’article B, nous nous intéressons au problème
de contrôle optimal de type champ moyen hiérarchique de la production d’électricité dans
un marché énergétique de réseau intelligent composé de n − 1 avec n ≥ 2 prosommateurs
et d’un producteur majeur, le leader du marché. Ces n agents imposent leurs stratégies de
production de manière séquentielle dans un ordre hiérarchique. Le leader du marché est
au sommet de la hiérarchie, et les autres prosommateurs le suivent à des niveaux séparés
en fonction de leur capacité de production. Nous modélisons le problème par une équation
d’état différentielle stochastique avec saut et par une fonctionnelle de coût quadratique.
La solution est établie à l’aide de la méthode directe et deux scénarios numériques sont
envisagés.

Mots clés— Contrôle hiérarchique de type champ moyen, jeu de Stackelberg de type
champ moyen, fonction objectif polynomiale, contrôle de la production d’électricité, marché
de l’énergie.
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A short overview of game theory

Game theory is a discipline that uses mathematical models to study the strategic inter-
actions of multiple rational decision-makers, known as players. A player can have very
different meanings; that can be a human, a plant, an animal, a robot, etc., which means
that the notion of games dates back to the beginning of time. However, the theory of
games was born in 1944 through the publication of the famous book ”Theory of Games
and Economic Behavior” by the mathematician John von Neumann and the economist Os-
kar Morgenstern (Neumann & Morgenstern, 1944). This foundation was strengthened by
the work of John Nash in 1951, who introduced the notion of a solution for non-zero-sum
games in (Nash, 1951). Since then, game theory has experienced significant mathematical
development and many applications in various disciplines: social sciences, biology, com-
puter science, economics sciences, politics, etc. The success of the field is particularly
remarkable in economics, where several game theorists received the Nobel Prize.
In this chapter, we present a short tour of game theory by introducing the basic concepts
that will be used in the second part of the thesis.

1 Game Representations
In game theory, the mathematical definition of a game takes two forms.

1.1 The Strategic Form
Definition 1.1. A game in strategic or normal form is defined by three features.

1. A set of I players, I = {1, ..., I}.

2. For each player i, i ∈ I, a collection of all possible strategies

Ui = {u1
i , u2

i , ..., uki
i }.

3



If each player chooses a strategy ui we can represent the outcome of the game as a
vector

u = {u1, u2, ..., uI}.

3. For each player i, i ∈ I, a payoff function li (named also a utility function), which
gives player i a value for each game outcome

li : U =
∏
i∈I

Ui → R.

□

Remark 1.1. In the normal form

• The players act simultaneously without knowing each other’s actions.

• A matrix is used to represent the game. □

Example 1.1 (The Prisoner’s Dilemma by Merrill Flood and Melvin Dresher (1950)). Two
criminals are arrested by the police after an armed robbery and interrogated in separate
rooms. Each is given the choice of denouncing his accomplice for using the gun (strategy
D) and receiving a reduced sentence, or remaining silent (strategy N) and being convicted
only of the robbery.
This situation is a kind of game in the normal form, where

• The players set I = 2, I = {1, 2} = {Suspect1, Suspect2}.

• The strategies set of each player’s k1 = K2 = 2, U1 = {u1
1 = D, u2

1 = N},
U2 = {u1

2 = D, u2
2 = N}.

• The outcome of the game u = {(N, N), (N, D), (D, N), (D, D)}.

• The payoff of each player (The years of imprisonment to which each is sentenced)

l1(u1
1 = D, u2

2 = N) = l2(u2
1 = N, u1

2 = D) = 1,

l1(u2
1 = N, u1

2 = D) = l2(u1
1 = D, u2

2 = N) = 5,

l1(N, N) = l2(N, N) = 2,

l1(D, D) = l2(D, D) = 4.
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1. Game Representations

• The matrix that represents the game

Suspect 2
D N

Suspect 1 D (4,4) (1,5)
N (5,1) (2,2)

Table 1: The Prisoner’s Dilemma Game Matrix

1.2 The Extensive Form
Definition 1.2. A game in extensive form is defined by

1. A set of I players, I = {1, ..., I}.

2. The order of play for each player.

3. The information that each player has about the moves of the other players.

4. A set of actions for each player i ∈ I, Ui = {u1
i , u2

i , ..., uki
i }.

5. A payoff function li(.) for each player i ∈ I. □

Remark 1.2. In the extensive form

• The players act sequentially over time, they can play once or multiple times with the
knowledge of the actions played before them.

• A tree used to represent the game, containing

– initial vertex (node),
– decision vertices,
– terminal vertices,
– branches connecting each node to its successors. □

Example 1.2 (The Entry Model by Dixit’s (1979)). We have two firms, The first (Firm
1) is an incumbent monopolist making $9 million in profits, and the second (Firm 2) is
a new competitor who wants to enter the market (strategy E). If Firm 2 decides to enter,
the monopolist can either fight (strategy F) by slashing prices or accommodate and create
a common monopoly (strategy C).
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This economic example is a kind of game in the extensive form, where

• The players set I = 2, I = {1, 2} = {Firm1, F irm2}.

• The strategies set of each player’s K1 = K2 = 2, U1 = {u1
1 = F, u2

1 = C},
U2 = {u1

2 = E, u2
2 = O}.

• The order of play Firm 2 acts first, then Firm 1 reacts.

• The information that Firm 1 contains Firm 2 played u1
2.

• The outcome of the game

U = {(O), (E, F ), (E, C)}.

• The payoff of each player (The profits of both companies)

l1(O) = 0, l2(O) = 9,

l1(E, F ) = −2, l2(E, F ) = −4,

l1(E, C) = 3, l2(E, C) = 5.

• The tree that represents the game

Firm 2

(0,9)

N

Firm 1

(-2,-4)

F

(3,5)

C

E

Fig. 1: The Entry Game Tree

2 Games Classification
According to the different contexts in which the players interact, games can be classified
in game theory as

• Cooperative and non-cooperative games
In cooperative games, players form a group or sub-groups and make enforceable
agreements to apply certain strategies in order to reach certain payoffs.
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2. Games Classification

While, in non-cooperative games, players prefer to play individually in a selfish
manner, even when they have the opportunity to communicate, where each of them
tries to maximize his profit using his best strategy. For more understanding, let us
take the example of the prisoner’s dilemma, which is a non-cooperative game, but, if
the suspects can communicate, they will commit to keeping quiet, which transforms
the game into a cooperative one.

• Static and dynamic games
A static game is a game that can be played simultaneously or at different times,
but in either case, the players have no information about the decisions of each other.
Otherwise, we have the dynamic game, which is a sequential or repeated game, where
each player has a set of information about the previous actions of the game. To deal
with the static game we use the strategic form, and to deal with the dynamic game
we use the extensive form. The relation between these two types of games is that the
dynamic game is a generalization of the static game when the last one is repeated a
finite or infinite number of times.

• Complete and incomplete information games
A complete information game is a game where all players have equal access to all
relevant information about the game. This means that every player knows the game
rules, all the other players, the strategies available to each of them, and the associated
payoffs. Various games with complete information can be cited, such as chess, tic-
tac-toe, rock-paper-scissors, and the prisoner’s dilemma. In contrast, incomplete
information games or Bayesian games involve hidden or private information, where
players may have partial or varying knowledge about the game. Poker is a well-
known example of an incomplete information game. Each player holds private cards
that are hidden from the other players. Also, the entry game can be a Bayesian
game if firms don’t know the payoffs of each other.

• Perfect and imperfect information games
We say that a game is a perfect information game if all decisions taken during this
game are visible to all players, and each player knows all strategies played before him.
But, when the player ignores some or all of these strategies, the game is said to be
an imperfect information game. A static game is a game with imperfect information,
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while a dynamic game can be with perfect or imperfect information.

• Symmetric and asymmetric games
For a game to be symmetric, all the players must have the same set of strategies, and
there must be no inherent advantage or disadvantage associated with a particular
player so that the players’ identities do not influence the payoffs. If any of the
previous conditions are not verified, then the game is said to be asymmetric. As
a result, we will get symmetry payoffs like in the prisoner’s dilemma example or
asymmetry payoffs like in the entry example.

• Zero-sum and non-zero-sum games
A zero-sum game is a particular case of the constant-sum game, where the sum of
payoffs equals the same constant value each time the players change their decisions;
in the zero-sum game case, this constant is zero. These types of games are based
on the idea that if a party of players wins, the other party loses, and vice versa.
In a non-zero-sum game, the value of the constant is not zero and changes as the
players’ decisions change. Also, in the non-zero-sum game, the notion of win-loss
is not necessarily exciting, i.e., if one wins, it does not mean that the other loses
so the game can be a win-win or a loss-loss. Returning to the prisoner’s dilemma
example, the sum of the two payoffs found in each cell of the table has different
strictly positive values (4,6,6,8), indicating that the game is a non-zero-sum game.

3 Game solution concept
A solution concept is certain conditions imposed on a game to have a solution and on a
strategy profile to be a solution. A game solution is a point of equilibrium among all players
presenting the ideal outcome of a game. A game may have no solution, one solution, or
multiple solutions. In game theory, there are many solution concepts, depending on the
type of game. For the interest of our papers in this section, we define the Nash equilibrium
solution concept and the Stagelberg equilibrium solution concept.

3.1 Nash equilibrium
The most famous solution concept in game theory is the Nash equilibrium, developed by
the American mathematician John Forbes Nash in 1950 (Nash, 1951) and named after
him. Its importance resides in predicting the solution of a wide large of games. The
Nash equilibrium was first interpreted for a static, non-cooperative game with complete
information before being extended to other types of games.
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3. Game solution concept

Definition 3.1. Best Response A strategy ui ∈ Ui of player i is the best response (BR)
to his opponents’ strategies u−i = (u1, ..., ui−1, ui+1, ..., uI) if

∀i ∈ I,∀u′
i ∈ Ui; li(ui, u−i) ≥ li(u′

−i, u−i),

with Ui = u′
1, ..., u′

i−1, ui, u′
i+1, ..., u′

I . □

Definition 3.2. Best Response Correspondence The best response correspondence
BRi(u−i) of player i is the application defined by

BRi : U−i = ×
j∈I\{i}

Uj → 2Ui

u−i → BRi(u−i) = arg max
u′

i∈Ui

li(u′
−i, u−i).

2Ui is the power set that represents all the possible subsets of Ui. □

Remark 3.1.

• BRi(u−i) is the player i set of all strategies that are the best response to u−i. If ui

is the unique best response to u−i then BRi(u−i) = ui.

• The best response correspondence BR(u) of the game is the application defined by

BR : U = ×
i∈I

Ui → 2U

u→ BR(u) =
∏
i∈I

BRi(u−i).

• u is a fixed point of BR(u) if u ∈ BR(u). □

Definition 3.3. Nash equilibrium A strategy profile u∗ = (u∗
1, u∗

2, ..., u∗
I) is a Nash equi-

librium if no player is interested in unilaterally deviating from his strategy u∗
i , considering

the expected best decisions of the other players u∗
−i. Formally, u∗ is a Nash equilibrium if

∀i ∈ I, ∀ui ∈ Ui; li(u∗
i , u∗

−i) ≥ li(ui, u∗
−i). (1)

□

Definition 3.4. A strategy profile u∗ is a Nash equilibrium if

u∗ ∈ BR(u∗), (2)

otherwise, a strategy profile u∗ is a Nash equilibrium if

∀i ∈ I, u∗
i ∈ BR(u∗

−i).

□
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Remark 3.2. The last characterization defines the Nash equilibrium as a solution to a
fixed point problem. To prove the existence of this point, Nash used the Kakutani (in 1941)
and the Brouwer (in 1912) fixed point theorems. □

Example 3.1. To define the Nash equilibriums for the Prisoner’s Dilemma game, we need
to express the intersection points of the best responses of all players, which verifies (2.2)
as follows

• The suspect 1 best responses BR1(D) = {D}, BR1(N) = {D}.

• The suspect 2 best responses BR2(D) = {D}, BR2(N) = {D}.

• The best responses correspondences of the game

– BR(D, D) = BR1(D)×BR2(D) = {D} × {D} = {(D, D)},
– BR(D, N) = BR1(D)×BR2(N) = {(D, D)},
– BR(N, D) = BR1(N)×BR2(D) = {(D, D)},
– BR(N, N) = BR1(N)×BR2(N) = {(D, D)}.

• The strategy profile that verifies (2.2) is BR(D, D) = (D, D).

⇒ This game has only one Nash equilibrium u∗ = (D, D).

Example 3.2. (The Cournot Model by Antoine Augustin Cournot (1838)) In the Cournot
oligopoly model (Cournot, 1838), the market is composed of n firms that compete by choosing
simultaneously their production quantities qi of the same single good. The market price is

given by the linear inverse demand function P = a−
I∑

i=1
qi = a−Q and the profit of each

producer i is equal to its revenue minus its cost

li(q1, ..., qn) = qiP − Ci(qi).
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3. Game solution concept

The strategic form of this model when I = 2 is known as Cournot’s duopoly game
defined as

• The players set I = 2, I = {1, 2} = {Producer1, P roducer2}.

• The strategies set of each player’s Ui = [0, +∞ [, i = {1, 2} .

• The outcome of the game u = (q1, q2), for qi ∈ Ui, i = {1, 2}.

• The payoff of each player (the profit of each firm)

l1(q1, q2) = q1(a− (q1 + q2))− C1(q1),
l2(q1, q2) = q2(a− (q1 + q2))− C2(q2).

To find the Nash equilibrium for this game, we will take the following steps

• Step 1. Write the profit maximization problem for each firm

max
q1

l1(q1, q2) = max
q1

(q1(a− (q1 + q2))− cq1)),

max
q2

l2(q1, q2) = max
q2

(q2(a− (q1 + q2))− cq2)).

• Step 2. Find the best response function for each firm by solving the previous problems

BR1(q2) = q∗
1 = argmax

q1
(q1(a− (q1 + q2))− cq1)),

BR2(q1) = q∗
2 = argmax

q2
(q2(a− (q1 + q2))− cq2)),

which is given by the first-order condition,

∂l1
∂q1

= −2q1 − q2 − c + a = 0⇒ BR1(q2) = q∗
1 = −q2 − c + a

2
,

∂l2
∂q2

= −2q2 − q1 − c + a = 0⇒ BR2(q1) = q∗
2 = −q1 − c + a

2
.

• Step 3. Find the Nash equilibrium (q∗
1, q∗

2) by solving the two best response equations
simultaneously

{
BR1(q∗

2) = q∗
1

BR2(q∗
1) = q∗

2
=⇒


q∗

1 = −q∗
2 − c + a

2
q∗

2 = −q∗
1 − c + a

2

=⇒
{

q∗
1 = q∗

2 = a− c

3
.

The game solution is u∗ = (a− c

3
,
a− c

3
).
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3.2 Subgame-Perfect Nash Equilibrium
The subgame-perfect Nash equilibrium, introduced by Reinhard Selten in 1975 (Selten,
1974), is a solution concept for dynamic games with complete information. The concept
is to decompose the game into sequential subgames, where the Nash equilibrium of each
subgame is a perfect subgame equilibrium for the original game. To solve these subgames,
consequently, the full game, we use the backward induction algorithm.

Definition 3.5. A subgame of an extensive form game is a single decision node with all
of its successor’s nodes and branches. □

Remark 3.3.

• Every game in extensive form has at least one subgame: the game itself.

• The entry game has two subgames.

Firm 1

(-2,-4)

F

(3,5)

C

(a) The last subgame

Firm 2

(0,9)

N

Firm 1

(-2,-4)

F

(3,5)

C

E

(b) The first subgame

Fig. 2: The Entry Subgames

□

Definition 3.6. Subgame-Perfect Nash Equilibrium A strategy profile u∗ = (u∗
1, ..., u∗

I)
is a subgame-perfect Nash equilibrium of an extensive form game if it constitutes a Nash
equilibrium for every subgame. □

Backward induction
The backward induction method was discovered by Arthur Cayley in 1875 while solving
the secretary problem. In game theory, the first use of backward induction was in the
solution of zero-sum two-player games by John von Neumann and Oskar Morgenstern in
their book (Neumann & Morgenstern, 1944). For the determination of subgame-perfect
equilibria of a dynamic game with complete and perfect information,
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3. Game solution concept

we use the following backward induction algorithms

• Step 1. Compute a Nash equilibrium for the terminal subgame of the game tree,
given all previous players’ decisions.

• Step 2. Delete this subgame and replace its initial node with the payoff vector
corresponding to its equilibrium.

• Step 3. Compute a Nash equilibrium for the new terminal subgame of the new game
tree, given all the decisions of the players who moved previously and the optimal
action for the player who moves in the deleted subgame.

• Step 4. Repeat steps 2 and 3 until you have only the subgame that starts at the
first node of the game.

• Step 5. Compute a Nash equilibrium for this first subgame, given all the optimal
actions for the players who move in the deleted subgames. This Nash equilibrium is
a subgame-perfect Nash equilibrium of the whole game.

Example 3.3. As an example of the backward induction algorithm, we solve the entry
game

• Step 1. The Nash equilibrium of the last subgame is (E, C)
where, C = B1(E) = argmax

ui

l1(ui, E).

Firm 2

(0,9)

N

Firm 1

(3,5)

C

E

Fig. 3: The Nash equilibrium of the last entry subgame
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• Step 2. The new game tree form is

Firm 2

(0,9)

N

(3,5)

E

Fig. 4: The new tree form of the entry game

• Step 3. The subgame-perfect Nash equilibrium of the entry game is (E, C) where,
E = B2(u∗

1) = argmax
ui

l2(ui, u∗
1).

Firm 2

(0,9)

N

(3,5)

E

Fig. 5: The subgame-perfect Nash equilibrium of the entry game

Example 3.4. (The Stackelberg Model by Heinrich Freiherr von Stackelberg (1934)) The
Stackelberg leadership model (Stackelberg, 1948) is an extensive form of the Cournot model.
In the Stackelberg duopoly model, firms move sequentially. The firm that moves first is
called the leader, and the firm that reacts second is called the follower. We apply the
backward induction principle to derive the Stackelberg subgame-perfect Nash equilibrium.
That is, we start by determining the optimal strategy of the follower and work backward to
determine the leader’s optimal strategy given that of the follower.

• Step 1. Solve the follower maximization problem given the leader’s decision using
the first-order condition as in the Cournot model

∂l2
∂q2

= −2q2 − q1 − c + a = 0⇒ BR2(q1) = q∗
2 = −q1 − c + a

2
.
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4. Stochastic Differential Game

• Step 2. Solve the leader maximization problem given the follower optimal strategy
using the first-order condition

∂l1
∂q1

= −2q1 −BR2(q1)− q1BR′
2(q1)− c + a = 0

⇔ −2q1 + q1 + c− a

2
+ q1

2
− c + a = 0

⇔ −2q1 −
q1 + c− a

2
− q1

2
− c + a = 0

⇔ BR1(q2) = q∗
1 = a− c

2
.

⇒ From steps 1 and 2, the subgame-perfect Nash equilibrium of the Stackelberg duopoly
game is u∗ = (q∗

1, q∗
2), where

q∗
1 = a− c

2
,

q∗
2 = −q∗

1 − c + a

2
= a− c

2
− a− c

4
⇔ q∗

2 = a− c

4
.

Comparing the output and benefit of each firm in the Stackelberg and Cournot models, we
find that

q∗S
1 > q∗C

1 ⇒ lS1 (q∗S
1 , q∗S

2 ) > lC1 (q∗C
1 , q∗C

2 ),
q∗S

2 < q∗C
2 ⇒ lS2 (q∗S

1 , q∗S
2 ) < lC2 (q∗C

1 , q∗C
2 ).

In the Stackelberg subgame perfect equilibrium, the leader makes the highest revenue
compared to the follower and the first firm in the Cournot Nach equilibrium. This extra
profit of the leader is due to the advantage of the first move. Therefore, we can conclude
that sequential moves and the order of these moves have a significant impact on the solution
of the game.

4 Stochastic Differential Game
Stochastic differential games emerged in the 1960s when researchers began using stochastic
calculus and stochastic optimal control to model and solve dynamic games that unfold
over a continuous time horizon. A stochastic differential game with I players is defined on
probability space (Ω,F, P ) and composed of

• I natural filtrations F :=
(
F1, ...,FI

)
, where for all 1 ≤ i ≤ I,Fi :=

(
F i

s

)
t≤s≤T

formalize the information available to each player i at the time s to choose his action.
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• I state equations as Itô stochastic differential equations (SDEs) describing the evo-
lution of the players in the game (the game state of each player).

dx1(s) = b1(s, x1(s), ..., xI(s), u1(s), ..., uI(s))ds + σ1(s, x1(s), ..., xI(s), u1(s), ..., uI(s))dB1(s),
dx2(s) = b2(s, x1(s), ..., xI(s), u1(s), ..., uI(s))ds + σ2(s, x1(s), ..., xI(s), u1(s), ..., uI(s))dB2(s),

...
dxI(s) = bI(s, x1(s), ..., xI(s), u1(s), ..., uI(s))ds + σI(s, x1(s), ..., xI(s), u1(s), ..., uI(s))dBI(s),

(3)

where for each player i

– xi(t) := xt
i, 0 ≤ t ≤ s ≤ T is a given initial state,

– bi : [t, T ]× RI ×
I∏

i=1
Ui → R is the drift function,

– σi : [t, T ]× RI ×
I∏

i=1
Ui → R is the diffusion coefficient function,

– ui(s) ∈ Ui = R is the action (control),
– Bi(s) is the Brownian motion.

– xi(s) ≡ x
t,xt

i
i (s) is the unique solution to his state equation under the initial

time t and the initial state xt
i.

• I expected objective functions, which can be benefits or utilities in the case of max-
imization, and costs or losses in the case of minimization.



L1(x1(t), ..., xI(t), u1(t), ..., uI(t)) = E
(∫ T

t l1(s, x1(s), ..., xI(s), u1(s), ..., uI(s))ds
)

+E (h1(x1(T ), ..., xI(T ))) ,

L2(x1(t), ..., xI(t), u1(t), ..., uI(t)) = E
(∫ T

t l2(s, x1(s), ..., xI(s), u1(s), ..., uI(s))ds
)

+E (h2(x1(T ), ..., xI(T ))) ,
...

LI(x1(t), ..., xI(t), u1(t), ..., uI(t)) = E
(∫ T

t lI(s, x1(s), ..., xI(s), u1(s), ..., uI(s))ds
)

+E (hI(x1(T ), ..., xI(T ))) ,

(4)
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4. Stochastic Differential Game

where for each player i

– li : [t, T ]× RI ×
I∏

i=1
Ui → R is the instantaneous benefit or loss function,

– hi : RI → R is the terminal benefit or loss function.

4.1 Information Structures
In a stochastic differential game, there are many different information structures available
to each player concerning the state of the game and the previous actions of the other players
at the time s when he chooses his control. Let us define the most common ones.

Definition 4.1. Open-loop strategy A control action ui(s) of player i is selected according
to an open-loop strategy if

ui(s) = γi(xt
i, s),

where γi(., .) : RI × [t, T ]→ Ui a strategy function. □

Definition 4.2. Closed-loop strategy A control action ui(s) of player i is selected ac-
cording to a closed-loop strategy if

ui(s) = γi(x[t,s]
i , s),

where x
[t,s]
i is the state of player i from time t to time s, t < s. □

Definition 4.3. State-feedback strategy A control action ui(s) of player i is selected
according to a state-feedback strategy if

ui(s) = γi(xi(s), s).

□
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4.2 Nash equilibrium
An I-tuple (u∗

1(s), u∗
2(s), ..., u∗

I(s)) of controls is a Nash equilibrium of a stochastic differ-
ential game under one of the information structures if they solve the following
I stochastic optimal control problems

L1 (x1(t), ..., xI(t), u∗
1(t), u∗

2(t), ..., u∗
I(t)) = max

u1(s)

(
min
u1(s)

)
L1 (x1(t), ..., xI(t), u1(t), u∗

2(t), ..., u∗
I(t)) ,

L2 (x1(t), ..., xI(t), u∗
1(t), u∗

2(t), ..., u∗
I(t)) = max

u2(s)

(
min
u2(s)

)
L2 (x1(t), ..., xI(t), u∗

1(t), u2(t), ..., u∗
I(t)) ,

...

LI (x1(t), ..., xI(t), u∗
1(t), u∗

2(t), ..., u∗
I(t)) = max

uI(s)

(
min
uI(s)

)
LI (x1(t), ..., xI(t), u∗

1(t), u∗
2(t), ..., uI(t)) .

(5)

Remark 4.1. In systems (3) and (4), players interact among states and controls, but we
can have other systems in which the players interact only among states or only among
controls. □

4.3 Dynamic Programming Principle
Originated by the American mathematician Richard Bellman in 1950, the dynamic pro-
gramming principle (DPP) is one of the powerful methods that can be used to solve the
system (5). The basic idea of this mathematical technique is to divide the principal optimal
control problem into subproblems with different initial times and states, where the optimal
control for these subproblems is the optimal control for the global problem, known as the
Bellman principle of optimality. To solve the stochastic optimal control, one must solve
a nonlinear second-order partial differential equation named the Hamilton-Jacobi-Bellma
equation (HJB), which relates all the subproblems.
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4. Stochastic Differential Game

Definition 4.4. The value functions or the cost-to-go functions of I players at initial time
t and initial state xt

i is given by



V1
(
t, xt

1, ..., xt
I

)
= max

u1(s)

(
min
u1(s)

)
L1 (x1(t), ..., xI(t), u1(t), u∗

2(t), ..., u∗
I(t)) ,

V2
(
t, xt

1, ..., xt
I

)
= max

u2(s)

(
min
u2(s)

)
L2 (x1(t), ..., xI(t), u∗

1(t), u2(t), ..., u∗
I(t)) ,

...

VI

(
t, xt

1, ..., xt
I

)
= max

uI(s)

(
min
uI(s)

)
LI (x1(t), ..., xI(t), u∗

1(t), u∗
2(t), ..., uI(t)) ,

(6)

with Vi
(
T, xt

1, ..., xt
I

)
= hi(xt

1, ..., xt
I) is the value function of the player i at terminal time

T .

□
Theorem 4.1. For any (τ, xτ

i ) ∈ [t, T ]×R where τ satisfies t ≤ τ ≤ T , the value functions
defined in (6) can be computed backward from the value functions
(V1 (τ, xτ

1 , ..., xτ
I ) , ..., VI (τ, xτ

1 , ..., xτ
I )) as follow

V1
(
t, xt

1, ..., xt
I

)
= max

u1(s)

(
min
u1(s)

)
E [
∫ τ

t l1(s, x1(s), ..., xN (s), u1(s), u∗
2(s), ..., u∗

I(s))ds + V1 (τ, xτ
1 , ..., xτ

I )] ,

V2
(
t, xt

1, ..., xt
I

)
= max

u2(s)

(
min
u2(s)

)
E [
∫ τ

t l2(s, x1(s), ..., xI(s), u∗
1(s), u2(s), ..., u∗

I(s))ds + V2 (τ, xτ
1 , ..., xτ

I )] ,

...

VI

(
t, xt

1, ..., xt
I

)
= max

uI(s)

(
min
uI(s)

)
E [
∫ τ

t lI(t, x1(s), ..., xI(s), u∗
1(s), u∗

2(s), ..., uI(s))ds + VI (τ, xτ
1 , ..., xτ

I )] .

(7)

These I equations are called the Bellman equations or the dynamic programming equations.
□
Proof. From (4) we have for all 1 ≤ i ≤ I

Li(x1(t), ..., xi(t), ..., xI(t), u1(t), ..., ui(t), ..., uI(t)) =E

(∫ T

t

li(s, x
t,xt

1
1 (s), ..., x

t,xt
I

I (s), u1(s), ..., uI(s))ds

+hi(x
t,xt

i
i (T ), ..., x

t,xt
I

I (T ))
)

=E
(∫ τ

t

li(s, x
t,xt

1
1 (s), ...x

t,xt
I

I (s), u1(s), ..., uI(s))ds

)
+E
(∫ T

τ

li(s, x
t,xt

1
1 (s), ..., x

t,xt
I

I (s), u1(s), ..., uI(s))ds

+hi(x
t,xt

i
i (T ), ..., x

t,xt
I

I (T ))
)

,
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Applying the iterated conditioning and the strong Markov property that consists
if τ : 0 ≤ t ≤ τ ≤ T is a stopping time with respect to Fi, then

E
[
f(xt,xt(s = τ + δ)) | F i

τ

]
= E

[
f(xτ,xτ (s = δ))

]
,

where δ = s− τ , see page 117 in (Øksendal, 2003) for the full definition.

We get:

E
(∫ T

τ

li(s,x
t,xt

1
1 (s), ..., x

t,xt
I

I (s), u1(s), ..., uI(s))ds + hi(x
t,xt

i
i (T ), ..., x

t,xt
I

I (T )))
)

=E
(
E

((∫ T

τ

li(s, x
t,xt

1
1 (s), ..., x

t,xt
I

I (s), u1(s), ..., uI(s))ds +hi(x
t,xt

i
i (T ), ..., x

t,xt
I

I (T ))
) ∣∣∣∣ F i

τ

))

=E
(
E

(∫ T

τ

li(s, x
τ,xτ

1
1 (s), ..., x

τ,xτ
I

I (s), u1(s), ..., uI(s))ds +hi(x
τ,xτ

i
i (T ), ..., x

τ,xτ
I

I (T ))
))

=E
(

Li(x1(τ), ..., xi(τ), ..., xI(τ), u1(τ), ..., ui(τ), ..., uI(τ))
)

,

⇒ Li(x1(t), ..., xi(t), ..., xI(t), u1(t), ..., ui(t), ..., uI(t)) = E
(∫ τ

t

li(s, x
t,xt

1
1 (s), ...x

t,xt
I

I (s), u1(s), ..., uI(s))ds

)
+E
(

Li(x1(τ), ..., xi(τ), ..., xI(τ), u1(τ), ..., ui(τ), ..., uI(τ))
)

,

In order to complete the proof of Theorem 4.1 and have:

Vi

(
t, xt

1, ..., xt
I

)
=min

ui(t)
Li (x1(t), ..., xI(t), u∗

1(t), ..., ui(t), ..., u∗
I(t)) ,

=min
ui(t)

E
[∫ τ

t

li(s, x1(s), ..., xI(s), u∗
1(s), ..., ui(s), ..., u∗

I(s))ds + Vi (τ, xτ
1 , ..., xτ

I )
]

,

You can consult the pages 180 and 181 in (Yong & Zhou, 1999).

■
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4. Stochastic Differential Game

Hamilton-Jacobi-Bellman Equation

To solve each value function Vi
(
t, xt

1, ..., xt
I

)
in (7), we define a partial differential equation

(PDE) for each of them.

Theorem 4.2. Assume that each value function Vi
(
t, xt

1, ..., xt
I

)
∈ C2

(
[t, T ]× RI

)
. Then(

V1
(
t, xt

1, ..., xt
I

)
, ..., VI

(
t, xt

1, ..., xt
I

))
is a solution of the following nonlinear second-order

partial differential equations

∂V1
∂t

(t, xt
1, ..., xt

I) + min
u1(t)

[
l1(t, x1(t), ..., xI(t), u1(t), u∗

2(t), ..., u∗
I(t))

+ b1(t, x1(t), ..., xI(t), u1(t), u∗
2(t), ..., u∗

I(t))
I∑

j=1

∂V1
∂xt

j

(
t, xt

1, ..., xt
I

)
+1

2
(σ1(t, x1(t), ..., xI(t), u1(t), u∗

2(t), ..., u∗
I(t)))2Tr(Hx(V1

(
t, xt

1, ..., xt
I

)
))
]

= 0 ,

∂V2
∂t

(t, xt
1, ..., xt

I) + min
u2(t)

[
l2(t, x1(t), ..., xI(t), u∗

1(t), u2(t), ..., u∗
I(t))

+ b2(t, x1(t), ..., xI(t), u∗
1(t), u2(t), ..., u∗

I(t))
I∑

j=1

∂V2
∂xt

j

(
t, xt

1, ..., xI
I

)
+1

2
(σ2(t, x1(t), ..., xI(t), u∗

1(t), u2(t), ..., u∗
I(t)))2Tr(Hx(V2

(
t, xt

1, ..., xt
I

)
))
]

= 0 ,

...
∂VI

∂t
(t, xt

1, ..., xt
I) + min

uI(t)

[
lI(t, x1(t), ..., xI(t), u∗

1(t), u∗
2(t), ..., uI(t))

+ bI(t, x1(t), ..., xI(t), u∗
1(t), u∗

2(t), ..., uI(t))
I∑

j=1

∂VI

∂xt
j

(
t, xt

1, ..., xt
I

)
+1

2
(σI(t, x1(t), ..., xI(t), u∗

1(t), u∗
2(t), ..., uI(t)))2Tr(Hx(VI

(
t, xt

1, ..., xt
I

)
))
]

= 0 ,

(8)

where Hx(Vi
(
t, xt

1, ..., xt
I

)
) the Hessian matrix of Vi w.r.t x and Tr the trace operator.

□

Proof. First, we start by setting τ = t + h, for 0 ≤ h ≤ τ − t in the Bellman principle of
optimality

Vi

(
t, xt

1, ..., xt
I

)
=min

ui(t)
E

[∫ t+h

t

li(s, x1(s), ..., xN (s), u1(s), u∗
2(s), ..., u∗

I(s))ds + Vi

(
t + h, xt+h

1 , ..., xt+h
I

)]
.
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After that, we apply the Ito stochastic differentiation rule to the function Vi

Vi

(
t + h, xt+h

1 , ..., xt+h
I

)
= Vi

(
t, xt

1, ..., xt
I

)
+
∫ t+h

t

(
∂Vi

∂s
(s, xs

1, ..., xs
I) + bi

I∑
j=1

∂Vi

∂xs
j

(
t, xt

1, ..., xt
I

))
ds,

+
∫ t+h

t

1
2

(σi)2Tr(Hx(Vi (s, xs
1, ..., xs

I)))ds +
∫ t+h

t

σi

I∑
j=1

∂Vi

∂xs
j

(t, xs
1, ..., xs

I) dBi(s),

such that bi = bi(t, x1(t), ..., xI(t), u1(t), ..., uI(t)),
σi = σi(t, x1(t), ..., xI(t), u1(t), ..., uI(t)).

The next step is to replace this Ito formula in the ith equation of (7)

Vi

(
t, xt

1, ..., xt
I

)
=min

ui(t)
E
[ ∫ t+h

t

li(s, x1(s), ..., xI(s), u∗
1(s), ..., ui(s), ..., u∗

I(s))ds + Vi

(
t, xt

1, ..., xt
I

)
+
∫ t+h

t

(
∂Vi

∂s
(s, xs

1, ..., xs
I) + b∗

i

I∑
j=1

∂Vi

∂xs
j

(
t, xt

1, ..., xt
I

))
ds,

+
∫ t+h

t

1
2

(σ∗
i )2Tr(Hx(Vi (s, xs

1, ..., xs
I)))ds +

∫ t+h

t

σ∗
i

I∑
j=1

∂Vi

∂xs
j

(t, xs
1, ..., xs

I) dBi(s)
]
,

where b∗
i = bi(t, x1(t), ..., xI(t), u1(t), ..., u∗

i (t), ..., uI(t)),
σ∗

i = σi(t, x1(t), ..., xI(t), u∗
1(t), ..., ui(t), ..., u∗

I(t)).

Taken outside of the minimum the terms that do not depend on the action ui and di-
viding the equation by h leads to

E
[∫ t+h

t

∂Vi

∂s
(s, xs

1, ..., xs
I) ds

h

]
+ min

ui(t)
E
[∫ t+h

t
li(s, x1(s), ..., xI(s), u∗

1(s), ..., ui(s), ..., u∗
I(s))ds

h

+

∫ t+h

t

b∗
i

I∑
j=1

∂Vi

∂xs
j

(t, xs
1, ..., xs

I) ds

h
+

∫ t+h

t

1
2

(σ∗
i )2Tr(Hx(Vi (s, xs

1, ..., xs
I)))ds

h

+

∫ t+h

t

σ∗
i

I∑
j=1

∂Vi

∂xs
j

(t, xs
1, ..., xs

I) dBi(s)

h

]
= 0. (9)

We know that if fi is a continuous, nonnegative random variable, the two following prop-
erties hold

• E(fi) = 0⇒ fi = 0,

• lim
h→0

∫ t+h

t
fi (s, xs

1, ..., xs
I) ds

h
= fi

(
t, xt

1, ..., xt
I

)
.
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4. Stochastic Differential Game

Using these results in (9) gives us the HJB equation

∂Vi

∂t

(
t, xt

1, ..., xt
I

)
+ min

ui(t)

[
li(t, x1(t), ..., xI(t), u∗

1(t), ..., ui(t), ..., uI(t))

+ bi(t, x1(t), ..., xI(t), u∗
1(t), ..., ui(t), ..., u∗

I(t))
I∑

j=1

∂Vi

∂xt
j

(
t, xt

1, ..., xt
I

)
+ 1

2
(σi(t, x1(t), ..., xI(t), u∗

1(t), ..., ui(t), ..., u∗
I(t)))2Tr(Hx(Vi

(
t, xt

1, ..., xt
I

)
)) = 0.

■

Remark 4.2.

• The second term in each equation in the (8) system is known as the Hamiltonian Hi

for all 1 ≤ i ≤ I

Hi(t, x1(t), ...,xI(t), pi, qi) = min
ui(t)

[
li(t, x1(t), ..., xI(t), u∗

1(t), u∗
2(t), ..., ui(t), ..., u∗

I(t))

+ bi(t, x1(t), ..., xI(t), u∗
1(t), u∗

2(t), ..., ui(t), ..., u∗
I(t))pi(t)

+ 1
2

(σi(t, x1(t), ..., xI(t), u∗
1(t), u∗

2(t), ..., ui(t), ..., u∗
I(t)))2qi(t)

]
= 0,

(10)

where pi(t) =
I∑

j=1

∂Vi

∂xt
j

(
t, xt

1, ..., xt
I

)
, and qi(t) = Tr(Hx(Vi

(
t, xt

1, ..., xt
I

)
)).

• The PDEs in the (8) system are called the Hamilton-Jacobi-Bellman equations.

• To have a solution for the I stochastic optimal control problems in (5), we must
apply the verification technique that involves the following steps.

– Step 1. Solve the Hamilton-Jacobi-Bellman equations in (8) to find the value
functions

(
V1
(
t, xt

1, ..., xt
I

)
, ..., VI

(
t, xt

1, ..., xt
I

))
.

– Step 2. Find the Nash equilibrium (the I optimal actions) (u∗
1(t), u∗

2(t), ..., u∗
I(t))

through (9).

– Step 3. Replace the I optimal actions in the I state equations (3) and solve
these I SDEs (with the initial time and state (0, x0

i )) to obtain the optimal
states (x∗

1(t), x∗
2(t), ..., x∗

I(t)).

=⇒ As a Final result we get for each player i on optimal pair (x∗
i (t), u∗

i (t)).
□
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5 Mean Field Game
Computing a Nash equilibrium of a stochastic differential game with I ≥ 2 players involves
solving the I-coupled HJB equations in (8) simultaneously. As the number of players I in-
creases, the resolution of the system becomes more and more complicated, if not impossible,
due to the increased interactions and couplings among the players. Jean-Michel Lasry and
Pierre-Louis Lions proposed the mean-field game (MFG) in (Lasry & Lions, 2007) to deal
with this large population game problem. The principal idea of the authors is to transfer
the concept of the mean field from the physics area, which considers the interaction of large
numbers of particles where each particle has a negligible effect on the whole system, to the
game theory area. To reduce complexity, each player in MFG plays against the mass of
the population rather than against each other individually (the interaction is among the
player states). In this case, the systems (3) and (4) become as follows respectively

dx1(s) = b1

(
s, x1(s), 1

I

I∑
j=1

δxj(s), u1(s)
)

ds + σ1

(
s, x1(s), 1

I

I∑
j=1

δxj(s), u1(s)
)

dB1(s),

dx2(s) = b2

(
s, x2(s), 1

I

I∑
j=1

δxj(s), u2(s)
)

ds + σ2

(
s, x2(s), 1

I

I∑
j=1

δxj(s), u2(s)
)

dB2(s),

...

dxI(s) = bI

(
s, xI(s), 1

I

I∑
j=1

δxj(s), uI(s)
)

ds + σI

(
s, xI(s), 1

I

I∑
j=1

δxj(s), uI(s)
)

dBI(s),

(11)

subject to,

L1

(
x1(t), 1

I

I∑
j=1

δxj(t), u1(t)
)

= E

∫ T

t
l1

(
s, x1(s), 1

I

I∑
j=1

δxj(s), u1(s)
)

ds + h1

(
x1(T ), 1

I

I∑
j=1

δxj(s)

) ,

L2

(
x2(t), 1

I

I∑
j=1

δxj(t), u2(t)
)

= E

∫ T

t
l2

(
s, x2(s), 1

I

I∑
j=1

δxj(s), u2(s)
)

ds + h2

(
x2(T ), 1

I

I∑
j=1

δxj(T )

) ,

...

LI

(
xI(t), 1

I

I∑
j=1

δxj(t), uI(t)
)

= E

∫ T

t
lI

(
s, xI(s), 1

I

I∑
j=1

δxj(s), uI(s)
)

ds + hI

(
xI(T ), 1

I

I∑
j=1

δxj(T )

) ,

(12)

where 1
I

I∑
j=1

δxj(.) is the empirical measure of all the player’s states and δxj(.) is the Dirac

measure (the unit mass at the state xj(.)).
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5. Mean Field Game

Also in MFG, we assume the following assumptions

• The number of players I is infinitely large.

• The players are indistinguishable and symmetric.

• The players are nonatomic, meaning that the individual action of one player does
not affect the global state of the game.

When I → ∞ and the three conditions are satisfied, the asymptotic formulations of the
last two systems are expected to not depend on i (i.e., nonparameterized). To simplify
the resolution of the equilibrium problem in this large game limit, we restrict the system
(11) composed of I identical equations in the limit to one dynamics equation, knowing as a
controlled McKean-Vlasov equation of one representative player who tries to minimize his
objective function given the aggregate behavior of the other players. Thus, the mean-field
game problem is formulated as follows

min
u(s)

L(x(t), u(t)) = E
(∫ T

t
l(s, x(s), m(s), u(s))ds + h(x(T ), m(T ))

)
,

subject to{
dx(s) = b(s, x(s), m(s), u(s))ds + σ(s, x(s), m(s), u(s))dB(s), s ∈ [t, T ],
x(t) = x.

(13)

Where the mean field term m(s) ∈ P(R) represents the probability distribution of a generic
player with state x at time s. According to the law of large numbers, m(s) is defined as

m(s) = lim
I→∞

1
I

( I∑
j=1

δxj(s)=x(s)

)
,

such that δ = 1 when xj(s) = x(s) and δ = 0 when xj(s) 6= x(s).

Solving the MFG problem is equivalent to solving the next pair of an HJB equation
describing the evolution of the value function of a representative agent and a Fokker-Planck-
Kolmogorov (FPK) equation describing the evolution of the probability distribution m(t),

∂V

∂t
(t, x) + min

u(t)

[
l(t, x, m(t), u(t)) + b(t, x, m(t), u(t))∂V

∂x
(t, x)

+1
2

σ(t, x, m(t), u(t))2 ∂2V

∂x∂x
(t, x)

]
= 0, t ∈ [0, T ]

V (T, x) = h(x, m(T )),
∂m

∂t
(t) + ∂(b(t, x, m(t), u∗(t))m(t))

∂x
− ∂2(σ(t, x, m(t), u∗(t))2m (t))

2∂x∂x
= 0, t ∈ [0, T ],

m(0) = m0.

(14)
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with

H(t, x, m, p, q) = min
u(t)

[
l(t, x, m(t), u(t)) + b(t, x, m(t), u(t))p(t)

+ 1
2

σ(t, x, m(t), u(t))2q(t)
]

= 0, (15)

p(t) = ∂V

∂x
(t, x) and q(t) = ∂2V

∂x∂x
(t, x).

Proof. • The proof of the HJB equation in the MFG system (14) is taken in the same
way as the proof of the theorem 2.21, where the mean field term m(t) is a fixed
deterministic function acting as a parameter.

• For the FPK equation, see the proof 6.2 without the jump part. ■

The mean-field game equilibrium is the solution pair (u∗(t), m(t)) of (14) system, where
u∗(t) satisfies

L(x, u∗(t)) ≤ L(x, u(t)),

and m(t) = L(x∗(t)), with x∗(t) the optimal state.

To obtain this pair, we must solve this fixed point problem by following the next steps.

• Step 1. Solving the HJB equation in (14) by freezing the mean field term m(t)
(supposed as an input) to get the value function V (t, x) = min

u(s)
L(x, u(t)).

• Step 2. Determine the optimal action u∗(t) = γ∗(t, x, m, p, q) by solving the Hamil-
tonian H in (15) and then the optimal state x∗(t) by solving{

dx∗(t) = b(t, x∗(t), m(t), u∗(t))ds + σ(t, x∗(t), m(t), u∗(t))dB(t), t ∈ [0, T ],
x∗(0) = x∗

0.

• Step 3. Identify the probability law m(t) of the optimal state x∗(t)
(m(t) = L(x∗(t))) by solving the FPK equation in the MFG system (14).
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6. Mean Field Type Game

6 Mean Field Type Game
The mean-field game assumptions exclude many real-world modeling problems. For ex-
ample, in engineering, economics, and various other domains, the agents are finite, not
anonymous, and each player takes actions that significantly affect the state of the game.
A relaxed version of the MFG called the mean-field type game (MFTG) was suggested by
Djehiche et al. in (Andersson & Djehiche, 2011; Buckdahn R. Djehiche & Li, 2011) for
a one-player game and extended to a multiplayer game in (Tembine, 2015; Tcheukam &
Tembine, 2016; Djehiche B. Tcheukam & Tembine, 2017; Tembine, 2017; Barreiro-Gomez
J. Duncan & Tembine, 2019c; T. Duncan & Tembine, 2018; Barreiro-Gomez J. Duncan &
Tembine, 2019b). To give the player more weight in the game, the authors incorporate the
first moments of his state and action into the state dynamics equation and the performance
functional (cost functional).

A I ≥ 2 finite stochastic MFTG problem is defined as follows

min
ui(s)

Li(x, ui(t), u−i(t))

= min
ui(s)

E
(∫ T

t
li(s, x(s),E[x(s)], ui(s),E[ui(s)], u−i(s),E[u−i(s)])ds + hi(x(T ),E[x(T )])

)
,

subject to
dx(s) = b(s, x(s),E[x(s)], ui(s),E[ui(s)], u−i(s),E[u−i(s)])ds

+σ(s, x(s),E[x(s)], ui(s),E[ui(s)], u−i(s),E[u−i(s)])dB(s), s ∈ [t, T ],
x(t) = x,

(16)

where u−i(s) = (u1(s), ..., ui−1(s), ui+1(s), ..., uI(s)),
E[x(s)] =

∫ T
t y(s)m(s, y)dy,

E[ui(s)] =
∫ T

t ui(s, y, m)m(s, y)dy,
and m(t, x) is the probability density of the state x at time t.

A Nash mean field type equilibrium is a strategies profile ((u∗
1(t), ..., u∗

i (t), ..., u∗
I(t))), that

satisfies for each player i ∈ I

Li(x, u∗
i (t), u∗

−i(t)) ≤ Li(x, ui(t), u∗
−i(t)).

6.1 Mean-Field-Type Game with Jump
When mathematics is applied to other scientific branches such as finance, economics, com-
puter science, engineering, biology, or meteorology, a natural question arises: Do the
obtained results fit those of these branches? Empirical studies of different trajectories in
different fields prove the existence of sudden variations with large amplitude (jumps) due
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to various external factors. For example, in finance, jumps in market prices are caused by
political decisions, epidemics, natural disasters, inflation, wars, etc., such as the infamous
stock market crash of 19 October 1987, when the Dow Jones Industrial Average plunged
23% in a single day. Other examples include jumps in the number of viewers trajectory in
social media and TV channels or jumps in the amount of rainfall trajectory resulting from
climate change and pollution. These empirical facts motivated us to model the state of
the MFTG in the second part of the thesis by a jump-diffusion process instead of a purely
continuous process as follows


dx(s) = b(s, x(s),E[x(s)], ui(s),E[ui(s)], u−i(s),E[u−i(s)])ds

+σ(s, x(s),E[x(s)], ui(s),E[ui(s)], u−i(s),E[u−i(s)])dB(s),
+
∫

Θ µ(s, x(s),E[x(s)], ui(s),E[ui(s)], u−i(s),E[u−i(s)], θ)Ñ(ds, dθ), s ∈ [t, T ],
x(t) = x, t ∈ [0, T ],

(17)

where: Θ = R+\{0} is the set of jump size,

µ : [t, T ]× R× P(R)×
I∏

i=1
Ui ×Θ→ R is the jump rate,

Ñ(dt, dθ) = N(dt, dθ)− ν(dθ)ds is the compensated Poisson measure,
N(ds, dθ) is the Poisson measure with intensity measure ν(dθ)ds,
the B and N processes are independent of each other.
B is used to capture smaller disturbances and N is used for larger system jumps.

For complete definitions and stochastic calculus based on jump processes, please refer
to (Cont & Tankov, 1st Edition, 2003; Øksendal & Sulem-Bialobroda, 2st Edition, 2009).

6.2 Solution Approaches

For solving an MFTG problem with jumps, we present two different methods

Dynamic Programming Principle

The state SDEs of the MFTG problems 16 and 17 are not appropriate to the dynamic
programming principle due to the existence of the density m(t, x), which renders the state
non-Markovian, and the iterated expectation no longer holds. The way out of this issue
is to identify an augmented state where the DPP can be applied. A satisfying augmented
state is the density m(t, x) that solves an FPK equation. We only need to rewrite the
cost-functional Li as a function of m(t, x) to obtain a classical deterministic differential
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6. Mean Field Type Game

game problem given by

min
ui(s)

Li(mt(x), ui(t), u∗
−i(t))

= min
ui(s)

∫ T

t

∫
R

li(s, x, m(s, x), ui(s), u∗
−i(s))m(s, x)dxds +

∫
R

hi(x, m(T, x))m(T, x)dx,

subject to
∂m

∂s
(s, x) + ∂(bm(s, x))

∂x
− ∂2(σ2m (s, x))

2∂x∂x
− J∗[m], s ∈ [t, T ],

m(t, x) = mt(x).
(18)

where b := b(s, x, m(s, x), ui(s), u−i(s)),
σ := σ(s, x, m(s, x), ui(s), u−i(s)),
µ(s, θ) := µ(s, x, m(s, x), ui(s), u−i(s), θ),

and J∗[m] the adjoint operator of the jump operator J given by

J [m] =
∫

Θ

[
m(s, x + µ(s, θ))−m(s, x)− µ(s, θ)∂m

dx
(s, x)

]
ν(dθ).

Proof. The FPK equation with jump
We start by applying the Ito differentiation for an arbitrary function noted g(x), where

x := x(s) is the jump-diffusion process in 17 (see Lemma 2 in (Bensoussan A. Djehiche
B. Tembine & Yam, 2019))

dg(x) =
(
b
∂g(x)

∂x
+ σ2

2
∂2g(x)
∂x∂x

+ J [g]
)
ds + σ

∂g(x)
∂x

dB(s)

+
∫

Θ
[g(x + µ(θ))− g(x)]Ñ(ds, dθ),

where J [g] is the jump operator of g(x) defined by

J [g] =
∫

Θ

[
g(x + µ(θ))− g(x)− µ(θ)dg(x)

dx

]
ν(dθ),

After that, we take the expectations of both sides

E[dg(x)] = E
[
b
∂g(x)

∂x
+ σ2

2
∂2g(x)
∂x∂x

+ J [g]
]
ds,

⇒ d

ds
E[g(x)] = E

[
b
∂g(x)

∂x
+ σ2

2
∂2g(x)
∂x∂x

+ J [g]
]
,
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Then, we rewrite the last equation in terms of the probability density m(s, x)

d

ds

∫
R

g(x)m(s, x)dx =
∫
R

[
b
∂g(x)

∂x
+ σ2

2
∂2g(x)
∂x∂x

+ J [g]
]
m(s, x)dx

=
∫
R

b
∂g(x)

∂x
m(s, x)dx +

∫
R

σ2

2
∂2g(x)
∂x∂x

m(s, x)dx +
∫
R

J [g]m(s, x)dx,

⇒
∫
R

g(x)∂m(s, x)
∂s

dx =
∫
R

b
∂g(x)

∂x
m(s, x)dx +

∫
R

σ2

2
∂2g(x)
∂x∂x

m(s, x)dx + 〈J [g], m(s, x)〉,

We know that: 〈J [g], m(s, x)〉 = 〈g(x), J∗[m]〉, where 〈, 〉 is the inner product, replacing
that in the last equation and by integration by parts, we get∫

R
g(x)∂m(s, x)

∂s
dx =−

∫
R

g(x)∂(bm(s, x)
∂x

dx +
∫
R

g(x)∂2(σ2m(s, x))
2∂x∂x

dx + 〈g(x), J∗[m]〉,

Now we combine the integrals∫
R

g(x)
[

∂m(s, x)
∂s

+ ∂(bm(s, x)
∂x

− ∂2(σ2m(s, x))
2∂x∂x

− J∗[m]
]
dx = 0,

⇒ ∂m(s, x)
∂s

+ ∂(bm(s, x)
∂x

− ∂2(σ2m(s, x))
2∂x∂x

− J∗[m] = 0.

The last equation is the FPK equation. ■

Definition 6.1. The cost-to-go function of player i is defined by
Vi(t, mt(x)) = min

ui(s)
Li(mt(x), ui(t), u∗

−i(t))

Vi(T, mT (x)) =
∫
R

hi(x, mt(x))mt(x)dx, t ∈ [0, T ].
(19)

Proposition 6.1. For any (τ, m(τ, x)) ∈ [t, T ]× P(R) with t ≤ τ ≤ T , we have

Vi(t, mt(x)) = min
ui(s)

[ ∫ t+h

t

∫
R

li(s, x, m(s, x), ui(s), u∗
−i(s))m(s, x)dxds + Vi(t + h, m(t + h, x))

]
(20)

□
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6. Mean Field Type Game

Proof. Let the right side of the equality be denoted by V̄i(t, mt(x)). For any ϱ > 0, there
exists ui(s) ∈ Ui[t, T ] so that

Vi(t, mt(x)) + ϱ > Li(mt(x), ui(t), u∗
−i(t)) =

∫ T

t

∫
R

li(s, x, m(s, x), ui(s), u∗
−i(s))m(s, x)dxds

+
∫
R

hi(x, m(T, x))m(T, x)dx,

=
∫ t+h

t

∫
R

li(s, x, m(s, x), ui(s), u∗
−i(s))m(s, x)dxds

+
∫ T

t+h

∫
R

li(s, x, m(s, x), ui(s), u∗
−i(s))m(s, x)dxds

+
∫
R

hi(x, m(T, x))m(T, x)dx,

≥
∫ t+h

t

∫
R

li(s, x, m(s, x), ui(s), u∗
−i(s))m(s, x)dxds

+ Vi(t + h, m(t + h, x)) ≥ V̄i(t, mt(x)).

Inversely, for any ϱ > 0 and a given ui(s) ∈ Ui[t, T ], there exists ũi(s) ∈ Ui[t, T ] that
matches with ui(s) on [t, t + h], so that

Li(m̃(t + h, x), ũi(t + h), ũ∗
−i(t + h)) ≤ Vi(t + h, m̃(t + h, x)) + ϱ,

with m̃(s, x) the solution of 18 at time s with control ũ(s), where m̃t(x) is the initial state.
Therefore

Vi(t, mt(x)) = Vi(t, m̃t(x)) ≤ Li(m̃t(x), ũi(t), ũ∗
−i(t))

=
∫ T

t

∫
R

li(s, x, m̃(s, x), ũi(s), ũ∗
−i(s))m̃(s, x)dxds

+
∫
R

hi(x, m̃(T, x))m̃(T, x)dx,

=
∫ t+h

t

∫
R

li(s, x, m̃(s, x), ui(s), u∗
−i(s))m̃(s, x)dxds

+
∫ T

t+h

∫
R

li(s, x, m̃(s, x), ũi(s), ũ∗
−i(s))m̃(s, x)dxds

+
∫
R

hi(x, m̃(T, x))m̃(T, x)dx,

=
∫ t+h

t

∫
R

li(s, x, m̃(s, x), ui(s), u∗
−i(s))m̃(s, x)dxds

+ Li(m̃(t + h, x), ũi(t + h), ũ∗
−i(t + h))

≤
∫ t+h

t

∫
R

li(s, x, m̃(s, x), ui(s), u∗
−i(s))m̃(s, x)dxds

+ Vi(t + h, m̃(t + h, x)) + ϱ,≤ V̄i(t, mt(x)).

31



We make ϱ −→ 0 and we take the infimum, we get

V̄i(t, mt(x)) ≤ Vi(t, mt(x)) ≤ V̄i(t, mt(x)),
⇒ Vi(t, mt(x)) = V̄i(t, mt(x)),

which concludes the proof. ■

Proposition 6.2. Suppose Vi(t, mt(x)) ∈ C2 ([t, T ]× P(R)), then Vi(t, mt(x)) is a solution
of the following HJB equation

∂Vi

dt
(t, mt(x)) +

∫
R

min
ui(s)

Hi(t, x, mt(x), Vim, Vixm, Vixxm)m(t, x)dx = 0, (21)

where the Hamiltonian Hi has the form

Hi(t, x, mt(x), Vim, Vixm, Vixxm) = li(s, x, m(s, x), ui(s), u∗
−i(s)) + bVixm + σ2

2
Vixxm

+
∫

Θ

[
Vim(s, x + µ(s, θ))− Vim − µ(s, θ)Vixm

]
ν(dθ), (22)

such that Vim(t, x, mt(x)) := ∂Vi

∂m
(t, mt(x)),

Vixm := ∂Vim

∂x
(t, mt(x)) ,

Vixxm := ∂2Vim

∂x∂x
(t, mt(x)). □

Proof. Applying the Taylor series to Vi(t + h, m(t + h, x)), we get

Vi(t + h, m(t + h, x)) =Vi(t, mt(x)) + h
∂Vi

∂t
(t, mt(x)) + (m(t + h, x)−m(t, x))∂Vi

∂m
(t, mt(x))

+ o(h),

from 18 we can rewrite Vi(t + h, m(t + h, x)) as

Vi(t + h,m(t + h, x)) = Vi(t, mt(x)) + h
∂Vi

∂t
(t, mt(x)) +

∫ t+h

t

{
− ∂(bm(s, x))

∂x
+ ∂2(σ2m (s, x))

2∂x∂x

+ J∗[m]
}

ds
∂Vi

∂m
(t, mt(x)) + o(h),
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6. Mean Field Type Game

replacing Vi(t + h, m(t + h, x)) in 20 yields

Vi(t, mt(x)) = min
ui(s)

[ ∫ t+h

t

∫
R

li(s, x, m(s, x), ui(s), u∗
−i(s))m(s, x)dxds + Vi(t, mt(x))

+h
∂Vi

∂t
(t, mt(x)) +

∫ t+h

t

{
− ∂(bm(s, x))

∂x
+ ∂2(σ2m (s, x))

2∂x∂x

+ J∗[m]
}

ds
∂Vi

∂m
(t, mt(x)) + o(h)

]
,

get the terms Vi(t, mt(x)) and h
∂Vi

∂t
(t, mt(x)) outside the minimum. Next, We dived by

h, as follows

∂Vi

∂t
(t, mt(x)) + min

ui(s)

[∫ t+h
t

∫
R li(s, x, m(s, x), ui(s), u∗

−i(s))m(s, x)dxds

h

+

∫ t+h

t

{
− ∂(bm(s, x))

∂x
+ ∂2(σ2m (s, x))

2∂x∂x
+ J∗[m]

}
ds

∂Vi

∂m
(t, mt(x))

h
+ o(h)

h

]
,

letting h→ 0, leads to

∂Vi

∂t
(t, mt(x)) + min

ui(s)

[ ∫
R

li(s, x, m(s, x), ui(s), u∗
−i(s))m(s, x)dx

+
{
− ∂(bm(s, x))

∂x
+ ∂2(σ2m (s, x))

2∂x∂x
+ J∗[m]

}
∂Vi

∂m
(t, mt(x))

]
,

Applying the integration by part, we obtain

∂Vi

∂t
(t, mt(x)) + min

ui(s)

[ ∫
R

{
li(s, x, m(s, x), ui(s), u∗

−i(s))

+bVixm + σ2

2
Vixxm + J [Vim]

}
m(s, x)dx

]
,

where,

J [Vim] =
∫

Θ

[
Vim(s, x + µ(s, θ))− Vim − µ(s, θ)Vixm

]
ν(dθ).

Thus, the Proposition 6.2 is proved. ■

For a better understanding of the dynamic programming principle method in the res-
olution of an MFTG optimal control problem, see Paper A.1, where we used the method
for solving a hierarchical MFTG problem with polynomial payoff.
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Direct Method
Another interesting approach to solving the MFTG problems is the direct method, pro-
posed first by Duncan and al. (e.g., (T. E. Duncan & Pasik-Duncan, 2012, 2013; T. E. Dun-
can, 2014, 2016)), after being applied to the MFTG in (Barreiro-Gomez J. Duncan & Tem-
bine, 2019c; T. Duncan & Tembine, 2018; Barreiro-Gomez J. Duncan & Tembine, 2019b;
Barreiro-Gomez J. Duncan T. E. Pasik-Duncan & Tembine, 2020; Barreiro-Gomez J. Dun-
can & Tembine, 2019a, 2020; Tian R. Yu & Zhang, 2020). It is called direct or verification
because it provides semi-explicit solutions without the need to solve the HJB-Kolmogorov
equations for the dynamic programming method, or backward-forward stochastic differ-
ential equations of the Pontryagin’s type for the stochastic maximum principle method.
These semi-explicit solutions allow us to make numerical applications and analyses, which
are of great importance in mathematical modeling. The direct method is a simple procedure
based on the following five main steps

• Step 1. Define the statement of the MFTG problem (state equation and perfor-
mance functional) that you are interested in solving.

• Step 2. From the structure of the terminal performance functional hi(x(T ),E[x(T )]),
identify a suitable guess functional f(t, x) for the optimal performance. This guess
functional is composed of unknown deterministic coefficients that need to be deter-
mined.

• Step 3. Apply Itô’s formula to the guess functional f(t, x). In the case of the
jump-diffusion processes, Itô’s formula has the form

fi(T, x(T ))− fi(t, x(t)) =
∫ T

t

[∂fi

ds
(s, x(s)) + b

∂fi

dx
(s, x(s)) + σ2

2
∂fi

dxdx
(s, x(s))

]
ds

+
∫ T

t
σ

∂fi

dx
(s, x(s))dB(s)

+
∫ T

t

∫
Θ

[
fi(s, x(s) + µ(s, θ))− fi(s, x(s))− µ(s, θ)∂fi

dx
(s, x(s))

]
ν(dθ)ds,

+
∫ T

t

∫
Θ

[fi(s−, x(s) + µ(s−, θ))− fi(s−, x(s))]Ñ(ds, dθ), s ∈ [t, T ], (23)

where b := b(s, x(s),E[x(s)], ui(s),E[ui(s)], u−i(s),E[u−i(s)]),
σ := σ(s, x(s),E[x(s)], ui(s),E[ui(s)], u−i(s),E[u−i(s)]),
µ(s, θ) := µ(s, x(s),E[x(s)], ui(s),E[ui(s)], u−i(s),E[u−i(s)], θ).

After that, compute the gap Li(x, ui(t), u−i(t)) − E[fi(t, x)] and group terms by
common factors.
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6. Mean Field Type Game

• Step 4. Complete the squares for both the control and the expected value of the
control to get them into a quadratic expression, and then rearrange the gap expres-
sion by grouping terms that have the state and the expected value of the state as
common factors.

• Step 5. Apply an identification process for the optimal control, the expected value
of the optimal control, and ordinary differential equations, such that the gap is min-
imized.

=⇒ At the end of the five steps, one gets

• The optimal actions (u∗
i (s), u∗

−i(s)) and their expected values (E[u∗
1(s)], ...,E[u∗

I(s)])
in semi-explicit form.

• A system of ordinary differential equations (Riccati equations) in which the solution
defines the deterministic coefficients of the guess functional and gives an explicit
form to the optimal controls and their expectations.

• The optimal state x∗(s) by replacing the optimal controls and the expected values
of the optimal controls in the state equation 17.

• The expected value of the optimal state E(x∗(s)).

For a better understanding of the direct method, see the proof 4 in Paper B, where we
used the method for solving a hierarchical MFTG problem in the electricity market.
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1. Introduction

Abstract
This article presents a class of hierarchical mean-field-type games with multiple layers
and non-quadratic polynomial costs. The decision-makers act in sequential order with
informational differences. We first examine the single layer case where each decision-
maker does not have the information about the other control strategies. We derive the Nash
mean-field-type equilibrium and cost in linear state-and-mean-field feedback form by using
a partial integro-differential system. Then, we examine the Stackelberg two-layer problem
with multiple leaders and multiple followers. Numerical illustrations show that, in the
symmetric case, having only one leader is not necessarily optimal for the total sum cost.
Having too many leaders may be also suboptimal for the total sum cost. The methodology is
extended to multi-level hierarchical systems. It is shown that the order of the play plays a
key role in the total performance of the system. We also identify specific range of parameters
for which the Nash equilibrium coincides with the hierarchical solution independently of the
number of layers and the order of play. In the heterogeneous case, it is shown that the total
cost is significantly affected by the design of the hierarchical structure of the problem.

1 Introduction
The idea of hierarchy dates back a least to 1934, when Stackelberg (Stackelberg, 1948)
introduced a game that models markets where some firms have stronger influence on others.
Stackelberg games consist of two players, a leader and a follower. The leader who moves
first, decides an optimal strategy after anticipating the best response of the follower. Then,
the follower eventually chooses the anticipated best response to optimize her cost or payoff.
Therefore, this game is a game with two-level hierarchy. A dynamic Linear-Quadratic (LQ)
Stackelberg differential game was studied by Samaan and Cruz (Simaan & Cruz, 1973a). A
stochastic LQ Stackelberg differential game was investigated by Bagchi and Başar(Bagchi
& Basar, 1981). Bensoussan et al. (Bensoussan, Chen, & Sethi, 2015) derive a maximum
principle for the leader’s Stackelberg solution under the adapted closed-loop memoryless
information structure.

Two or more players, the Stackelberg game is called hierarchical game and it becomes
more interesting and involved due to its multi-layer structure including various forms of
information. The players act in sequential order such that each one of them is a leader for
the previous and a follower of the next player in the hierarchy. For hierarchical mean-field-
free differential games, see e.g. (Pan & Yong, 1991; Simaan & Cruz, 1973b; Cruz, 1978;
Gardner & Cruz, 1978; Basar & Selbuz, 1979).

Only few works consider hierarchical structures in mean-field related games. Open-loop
Stackelberg solutions are addressed in linear-quadratic setting in (Lin, Jiang, & Zhang,
2019; Du & Wu, 2019);and in the context of large populations, mean-field Stackelberg
games are investigated in (Moon & Basar, 2015; Bensoussan, Chau, & Yam, 2015; Ben-
soussan, Chau, Lai, & Yam, 2017; Averboukh, 2018; Moon & Basar, 2018). Besides, the

41



Paper A.

leader-follower configuration has been used in several problems and fields to illustrate and
model a variety of hierarchical behaviors. For instance, in (Shi, Wang, & Xiong, 2016),
a leader-follower stochastic differential game with asymmetric information is studied mo-
tivated by applications in finance, economics and management engineering. In (Nourian,
Caines, Malhamé, & Huang, 2012), a large population leader-follower stochastic multi-
agent systems is analyzed with coupled cost functions and by using a mean-field Linear-
Quadratic-Gaussian (LQG) approach. Regarding control applications, (Cai & Hu, 2017)
presents a tracking control design in a distributed manner in a multiagent system config-
ured in a leader-follower fashion, and it is shown that the setup can be used to model the
power sharing problem in microgrids. In (Li, Shi, & Chen, 2018), a security problem in
networked control systems is studied by means of a Stackelberg approach, and in (Barreiro-
Gomez, Ocampo-Martinez, & Quijano, 2017) a hierarchical control structure or sequential
predictive control is designed for a large-scale water system. In (Sutter & Rivas, 2014),
leadership is studied in the context of public goods games by means of the reward and
punishment effects. The works mentioned above do not consider hierarchical mean-field-
type game setting where the payoff functionals are non-linear with respect to the probability
measure of the state.

Hierarchical mean-field-type game theory studies a class of hierarchical games in which
the payoffs and/or state dynamics depend not only on the state-action pairs but also the
distribution of them (Barreiro-Gomez, Duncan, & Tembine, 2019). This class of games
offers several features:

• A single decision-maker can have a strong impact on the mean-field terms,

• The expected payoffs are not necessarily linear with respect to the state distribution,

• The number of decision-makers is not necessarily infinite.

Games with non-linear distribution-dependent quantity-of-interest are very attractive in
terms of applications since the non-linear dependence of the payoff functions in terms of
state distribution allows us to capture risk measures, which are functionals of variance,
inverse quantile, and/or higher moments. In portfolio optimization, for instance, pay-
off functions may include the third and the fourth moments known as the kurtosis and
skewness (e.g.(Beardsley, Field, & Xiao, 2012; Theodossiou & Savva, 2016)). Generally,
equilibrium solutions to mean-field type games are presented as either open-loop or closed-
loop solutions. The open-loop solutions are controls that do not explicitly depend on the
state process at time t, i.e., they are rather adapted processes that depend only on time
and the initial data. The stochastic maximum principle can be used as a methodology
for finding such optimal control strategies. Closed-loop solutions (aka feedback solutions)
are deterministic functions that depend on the state of the process at time t as well as its
marginal distribution. The dual adjoint functions which are obtained from the Hamilton-
Jacobi-Bellman (HJB) equations can be used for finding feedback optimal controls. We
will use this approach throughout this paper. For linear quadratic stochastic differential
games, Sun and Yong (Sun & Yong, 2014) established that the existence of open-loop
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optimal control strategies is equivalent to the solvability of the corresponding optimality
system which is a forward-backward (Stochastic Differential Equation) SDE, and the ex-
istence of closed-loop optimal strategies is equivalent to the existence of a regular solution
to the corresponding Riccati equation.

Our contribution can be summarized as follows. This work examines a class of hierar-
chical mean-field-type games with multiple layers, multiple leaders, and multiple followers.
Based on infinite dimensional partial integro-differential equations (PIDEs) on the space
of measures, we provide semi-explicit solutions in closed-loop form of a class of master
systems with hierarchical structure and non-quadratic cost, which are not covered in the
earlier works. Recall that the non-quadratic costs allow analyzing other classes of higher
risk terms, e.g., kurtosis (Beardsley et al., 2012; Theodossiou & Savva, 2016). The novelty
of this paper mainly lies in the analysis of the effect of hierarchy and leadership on the
solutions.

The rest of this article is structured as follows. We present the model setup in Section
2. Section 3 investigates the Nash equilibrium (no leader). Section 4 presents Stackelberg
solution. The multi-layer case is presented in Section 5. Numerical examples are presented
in Section 6. Finally, concluding remarks are drawn in Section 7.

2 The Setup
There are I ≥ 2 number of decision-makers interacting within the time horizon [t0, t1], t0 <
t1. The set of decision-makers is denoted by I = {1, 2, . . . , I}. Decision-maker i ∈ I has
a control action ui ∈ Ui = R. The state x is driven by a Drift-Jump-Diffusion process of
mean-field type given by

dx = bdt + σdB +
∫

Θ
µ(., θ)Ñ(dt, dθ), x(t0) ∼ m(t0, .),

where
Drift: b : [t0, t1]× R×

∏I
j=1 Uj × P(R)→ R,

Diffusion coefficient: σ : [t0, t1]× R×
∏I

j=1 Uj × P(R)→ R,

Brownian motion B,

Set of jump size: Θ = R+\{0},
Jump: N(dt, dθ),
Compensated jump: Ñ(dt, dθ) = N(dt, dθ)− ν(dθ)dt,

Jump rate: µ : [t0, t1]× R×
∏I

j=1 Uj × P(R)×Θ→ R,

where P(R) denotes the set of probability measures on R. We assume that x(t0), B and N
are mutually independent. The performance functional of decision-maker i is

Li(u, m0) = hi(x(t1), m(t1)) +
∫ t1

t0
li(t, x, u, m)dt,
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where m(t, dy) = Px(t)(dy) is the probability measure of the state x(t) at time t, and

li : [t0, t1]× R×
∏I

j=1 Uj × P(R)→ R,

hi : R× P(R)→ R.

In addition, each decision-maker is assumed to have a computational capability such as
being able to compute an aggregative term of m from the model. Let Ui be the set of
control strategies of decision-maker i that are progressively measurable with respect to the
filtration generated by the unions of events in {B, N}.

2.1 Games with polynomial cost
We investigate the mean-field-type game with the following data:

t0 = 0, t1 = T > 0, (A.1a)

li(t, x, u, m) = qi
(x− x̄)2ki

2ki
+ ri

(ui − ūi)2ki

2ki
+ ci(x− x̄)2ki−1(ui − ūi)

+
∑

j∈I\{i}
ϵij(x− x̄)2(ki−1)(ui − ūi)(uj − ūj)

+ q̄i
x̄2k̄i

2k̄i

+ r̄i
ū2k̄i

i

2k̄i

+ c̄ix̄
2k̄i−1ūi +

∑
j 6=i

ϵ̄ij x̄2(k̄i−1)ūiūj , (A.1b)

hi(x, m) = qiT
(xT − x̄T )2ki

2ki
+ q̄iT

x̄2k̄i
T

2k̄i

, (A.1c)

b(t, x, u, m) = b1(x− x̄) + b̄1x̄ +
∑
j∈I

[
b2j(uj − ūj) + b̄2j ūj

]
, (A.1d)

σ(t, x, u, m) = (x− x̄)σ̃, (A.1e)

µ(t, x, u, m, θ) = (x− x̄)µ̃(., θ), (A.2a)

x̄(t) =
∫

ym(t, dy), (A.2b)

ūi(t) =
∫

ui(t, y, m)m(t, dy), i ∈ I, (A.2c)

where ki ≥ 1, k̄i ≥ 1, are natural numbers, and the coefficients are time-dependent. The
coefficient functions qi, ri, q̄i and r̄i are nonnegative functions and

∫ t1

t0

[
σ̃2(t) +

∫
Θ

(
(1 + µ̃(t, θ))2ki − 1− 2kiµ̃(t, θ)

)
ν(dθ)

]
dt < +∞.
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2.2 Hierarchical Leader Design and Algorithmic Approach
The hierarchical leadership design consists of finding the optimal number of hierarchical
layers h and the non-empty subsets of players I1, . . . , Ih partitioning the set of all players
as

I =
h⋃

k=1
Ik, and if k 6= k′, Ik ∩ Ik′ = ∅.

The performance functional for the hierarchical design is the sum cost at the chosen hier-
archical solution, i.e.,

inf
h

inf
(I1,...,Ih):∪h

k=1Ik=I
S(h, I1, . . . , Ih).

Here, we take into consideration three main game scenarios described as follows. First,
the game has a unique layer, i.e., a situation in which all the players select their strate-
gies simultaneously. Second, the game is played in two layers (bi-level hierarchy). The
players are grouped into two sets (h = 2) known as leaders, those who decide first and
simultaneously, and followers, those who react against the decision of the leaders. Third,
the game is structured to take into account as many layers as the number of players (fully
hierarchical configuration with h = I), i.e., players select strategically in sequence one by
one in I layers. For all configurations, let L∗

i denote the optimal cost of the player i ∈ I in
the hierarchical mean-field-type game problem and S(h, I1, . . . , Ih) =

∑
i∈I L∗

i denotes the
total (social) cost at the hierarchical solution. The hierarchical leadership design consists
of determining the optimal leaders, followers, and/or number of layers such that the total
cost is minimized

Notice that, for both the bi-level and fully hierarchical cases, there are multiple combi-
nations for the players. In the bi-level scenario, the set of all possible sets of leaders is given
by the power set 2I , and any set of leaders is denoted by IL ⊆ 2I with the corresponding
set of followers IF = I \ IL. Regarding the fully-hierarchical game, there are as many
possibilities in the strategic ordering as permutations of the set of players I. All possible
permutations of the players are considered.

For the bi-level case, the optimal set for leaders and followers is

I∗
L ∈ arg min

2I
S(2, I1, I2),

I∗
F = I \ I∗

L.

On the other hand, for the fully-hierarchical case, we have that the optimal permutation is

(I∗
1 , . . . , I∗

I ) ∈ arg min
I1,...,II

S(I, I1, . . . , II).

In this paper, we study the three aforementioned scenarios involving one, two, and I
layers as presented in Figure A.1. We also present under which conditions all the three
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configurations have the same solution, i.e., when the Nash solution coincides with the
hierarchical solutions at different layers. Furthermore, we present numerical examples
considering different levels of hierarchy. The problem addressed in this paper can be inter-
preted as a mechanism design that, instead of determining the appropriate cost functionals
or utility functions to induce a desired output, we design the best hierarchical structure in
order to reduce the overall social cost.

Equivalence if
εij = ε̄ij = 0

for all i, j ∈ I



Nash equilibrium

Stackelberg solution

One layer

Two layers

Multiple layers Hierarchical solution

Fig. A.1: Different hierarchical designs and their solution concepts are considered
in this paper.

Remark 2.1 (Feasibility and Existence). The set of possible combinations for the lay-
ers/levels and players per level is non-empty and finite. Then, the optimal hierarchical
leader design is feasible and there exists an optimal solution (combination) such that the
social cost is minimized. □

Since the feasible set of possible combinations for the hierarchical configurations is
non-empty and finite, then it is possible to find the best hierarchical structure by means
of Algorithm 1. The main results evoked in the Algorithm 1 given by Propositions 1, 2,
and 3, are presented throughout the paper.
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Algorithm 1: Finding the best hierarchical structure
Result: Leadership design in multi-level hierarchical games
initialization;
I ← {1, . . . , I}, set of decision-makers;
I ← |I|, number of decision-makers;
H∗ ← I, initialization for the partition ;
S∗ ← ∞, initial arbitrary social cost ;
tb ← B(I), number of possible leadership structures;
{H(1), . . . ,H(B(I))} ← set of all B(I) possible leadership structures;
i ← 0, initial index to test the leadership structure;
while i ≤ tb do

ℓ ← number of levels in the structure H(i) ;
{I1, . . . , Iℓ} ← partition from H(i) ;
switch ℓ do

if ℓ = 1: S(I, {I1, . . . , Iℓ}) ← social cost for the Nash game Proposition 1 ;
if ℓ = 2: S(I, {I1, . . . , Iℓ}) ← social cost for the Stackelberg game
Proposition 2 ;

if ℓ ≥ 3: S(I, {I1, . . . , Iℓ}) ← social cost for the Hierarchical game
Proposition 3 ;

end
if S(I, {I1, . . . , Iℓ}) < S∗ then
H∗ ← H(i) update of the hierarchical structure;
S∗ ← S(I, {I1, . . . , Iℓ}) update of the social cost;

else
H(i) is a candidate optimal design;

end
i ← i + 1 ;

end
The optimal leadership design is H∗ with social cost S∗;

According to the procedure in Algorithm 1, one of the main concerns in the leadership
design problem is related to the dimensionality of the feasible set for the hierarchical
structures (NP-hard problem). The total number of combinations is given by the total
number of ordered partitions from a set, such total combinations are computed by means
of the ordered Bell number B : N→ N, i.e., for I players we have:

B(I) =
I∑

k=0

k∑
j=0

(−1)k−j

(
k
j

)
jn.

For instance, if I = 2, then there are B(2) = 3 possible leadership configurations as
shown in Figure A.2; i I = 3, then there are B(3) = 13 possible leadership structures
presented in Figure A.3, and B(4) = 75, B(5) = 541, and B(6) = 4683. Figure A.4 illus-
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trates the rapid increment of the number of combinations as the decision-makers increase.
Notice that it is not possible to have more levels than players in the hierarchical game
(h ≤ I). The following sections are devoted to the presentation of semi-explicit solutions
for hierarchical mean-field-type games with different levels from one (Nash scenario) up to
the number of players I (fully-hierarchical scenario).

1

2

2

1

1 2

Fig. A.2: Possible combinations in the hierarchical leadership design
for two decision-makers. Ordered Bell number B(2) = 3.
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1 2 3
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Fig. A.3: Possible combinations in the hierarchical leadership design
for three decision-makers. Ordered Bell number B(3) = 13.
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Fig. A.4: Number of possible hierarchical structures for a given set of
decision-makers described by the ordered Bell number B(I).

3 Nash Mean-Field-Type Equilibrium
The risk-neutral mean-field-type game is given by

(I, Ui,Ui,E[Li])i∈I .

A risk-neutral Nash Mean-Field-Type Equilibrium is a solution of the following fixed-point
problem:

i ∈ I,

E[Li(u∗)] = inf
ui∈Ui

E[Li(u∗
1, . . . , u∗

i−1, ui, u∗
i+1, . . . , u∗

I)].

Let V̂i(t, m) be the optimal cost-to-go from m at time t ∈ (t0, t1) given the strategies of
the others, i.e.,

V̂i(t, m) = inf
ui

E[hi(x(t1), m(t1)) +
∫ t1

t
li(t, x, u, m)dt′|m(t) = m].

We say that V̂i,m(t, x, m) := V̂i,m(t, m)(x) is a Gâteaux derivative of V̂i(t, m) with
respect to the measure m if

lim
τ→0

d

dτ
V̂i(t, m + τm̃) =

∫
V̂i,m(t, m)(x)m̃(dx). (A.3)
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If
∫

m̃(dx) = 0 then by adding a constant to V̂i,m(t, x, m) does not change the
value of the integral in (A.3). For any scalar λ and m ∈ P(R) one has, λ = λ

∫
m(dx).

Thus, λ is also a Gâteaux-derivative of the constant function λ. However in our
problem, the term V̂i,xm which is the gradient of x 7→ V̂i,m(t, x, m) will be used in
the Hamiltonian, and V̂i,xm does not have the constant ambiguity. Let us denote the
jump operator J as

J [ϕi] :=
∫

Θ
[ϕi,m(t−, x + µ)− ϕi,m − µϕi,xm]ν(dθ),

Let us introduce the integrand Hamiltonian as

Hi(t, x, m, V̂m, V̂xm, V̂xxm)

= inf
ui∈Ui

{
li + b V̂i,xm + σ2

2
V̂i,xxm +

∫
Θ

[V̂i,m(t−, x + µ)− V̂i,m − µV̂i,xm]ν(dθ)
}

.

A sufficiency condition for a risk-neutral Nash equilibrium system is given by the
following PIDE system:

0 = V̂i,t(t, m) +
∫

Hi(t, x, m, V̂m, V̂xm, V̂xxm)m(dx), (A.4a)

V̂i(t1, m) =
∫

m(dy)hi(y, m), i ∈ I. (A.4b)

We refer the reader to Proposition 6.2 from (Bensoussan, Djehiche, Tembine, &
Yam, 2020) for a derivation of this equilibrium system. The system (A.4) is an
infinite dimensional PIDE system in m and it provides the Nash equilibrium values
of the mean-field-type game. Notice that from (A.4) the equilibrium strategies, are
the best response to the integrand Hamiltonian and can be expressed as functions of
t, x, m, V̂i,m, V̂i,xm, V̂i,xxm.

Next, we provide semi-explicitly the Nash mean-field-type equilibrium in linear
state-and-mean-field feedback strategies. To do so, we use (A.4).
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Proposition 3.1. A risk-neutral Nash mean-field-type equilibrium is given in a semi-
explicit way as follows:

une
i = −ηi

(
x−

∫
ym(dy)

)
− η̄i

∫
ym(dy), (A.5a)

0 = −riη
2ki−1
i −

∑
j 6=i

ϵijηj + b2iαi + ci, (A.5b)

0 = −r̄iη̄
2k̄i−1
i −

∑
j 6=i

ϵ̄ij η̄j + b̄2iᾱi + c̄i, (A.5c)

V̂i(t, m) = αi

∫
x

(x−
∫

ym(dy))2ki

2ki

m(dx) + ᾱi
(
∫

ym(dy))2k̄i

2k̄i

, (A.6a)

0 = α̇i + qi + riη
2ki
i − 2kiciηi + 2ki

∑
j 6=i

ϵijηiηj + 2kiαi[b1 −
∑
j∈I

b2jηj] (A.6b)

+ 2ki(2ki − 1)αi
1
2

σ̃2 + αi

∫
Θ

[
(1 + µ̃)2ki − 1− 2kiµ̃

]
ν(dθ),

αi(T ) = qiT , (A.6c)

0 = ˙̄αi + q̄i + r̄iη̄
2k̄i
i − 2k̄ic̄iη̄i + 2k̄i

∑
j 6=i

ϵ̄ij η̄iη̄j + 2k̄iᾱi

b̄1 −
∑

j

b̄2j η̄j

 , (A.6d)

ᾱi(T ) = q̄iT , (A.6e)

for all i ∈ I with
∫

ym(t, dy) =
[∫

ym(0, dy)
]

e

∫ t

0

[
b̄1−
∑

j
b̄2j η̄j

]
dt′

, (A.6f)

whenever the above coefficient system admits a solution that does not escape within
[t0, t1]. □

Proof. Under the assumption of perfect state observation and perfect knowledge of
the model, a sufficiency condition for equilibrium is given by the PIDE system (A.4).
We aim to solve (A.4). To do so, we start with the following guess functional of
decision-maker i as

V̂i(t, m) = αi(t)
∫

x

(x−
∫

ym(dy))2ki

2ki

m(dx) + ᾱi(t)
(
∫

ym(dy))2k̄i

2k̄i

,

where the coefficient functions αi and ᾱi need to be determined. Notice that, for
ki = 1, the functional V̂i(t, m) becomes a mean-variance-dependent functional, and
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for an arbitrary parameter ki, the functional may support higher order moments.
We compute the key terms V̂i,m(t, m), V̂i,xm(t, m), V̂i,xxm(t, m).

V̂i,m(t, m) = −αix
∫ (

y −
∫

zm(dz)
)2ki−1

m(dy) + αi
(x−

∫
ym(dy))2ki

2ki

+ ᾱix
(∫

ym(dy)
)2ki−1

, (A.7a)

V̂i,xm(t, m) = −αi

∫ (
y −

∫
zm(dz)

)2ki−1
m(dy) + αi

(
x−

∫
ym(dy)

)2ki−1

+ ᾱi

(∫
ym(dy)

)2ki−1
, (A.8a)

V̂i,xxm(t, m) = (2ki − 1)αi

(
x−

∫
ym(dy)

)2(ki−1)
, (A.8b)

V̂i,m(t, m)(x + µ)− V̂i,m(t, m)(x)− µV̂i,xm(t, m)(x) (A.8c)

= αi
(x−

∫
ym(dy))2ki

2ki

[
(1 + µ̃)2ki − 1− 2kiµ̃

]
+ ϵ̃, (A.8d)

with
∫

ϵ̃m(dy) = 0. The Integrand Hamiltonian is strictly convex in (ui− ūi, ūi). The
optimal control strategy is the unique minimizer of

ri
(ui − ūi)2ki

2ki

+ ci(x− x̄)2ki−1(ui − ūi) +
∑
j 6=i

ϵij(x− x̄)2(ki−1)(ui − ūi)(uj − ūj)

+
[
V̂i,xm(t, m)−

∫
V̂i,xm(t, m)(x)m(dx)

]∑
j∈I

b2j(uj − ūj) + r̄i
ū2k̄i

i

2k̄i

+ c̄ix̄
2k̄i−1ūi

+
∑
j 6=i

ϵ̄ijx̄
2(k̄i−1)ūiūj +

[∫
V̂i,xm(t, m)(x)m(dx)

]∑
j

b̄2jūj. (A.9)

By strictly convexity and by orthogonality between (ui− ūi) and ūi the following
condition system holds:

i ∈ I,

0 = ri(ui − ūi)2ki−1 + ci(x− x̄)2ki−1 +
∑
j 6=i

ϵij(x− x̄)2(ki−1)(uj − ūj)

+
[
V̂i,xm(t, m)−

∫
V̂i,xm(t, m)(x)m(dx)

]
b2i, (A.10a)

0 = r̄iū
2k̄i−1
i + c̄ix̄

2k̄i−1 +
∑
j 6=i

ϵ̄ijx̄
2(k̄i−1)ūj +

[∫
V̂i,xm(t, m)(x)m(dx)

]
b̄2i. (A.10b)
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By solving the previously mentioned conditions, one obtains the optimal control
input in a closed-loop form. The linear state-and-mean-field-type feedback strategy
ui = −ηi(x −

∫
ym(dy)) − η̄i

∫
ym(dy), i ∈ I solves the system if the coefficients

satisfy
i ∈ I,

0 = −riη
2ki−1
i −

∑
j 6=i

ϵijηj + b2iαi + ci, (A.11a)

0 = −r̄iη̄
2k̄i−1
i −

∑
j 6=i

ϵ̄ij η̄j + b̄2iᾱi + c̄i, (A.11b)

The integrand Hamiltonian of i becomes

Hi =

qi + riη
2ki
i − 2kiciηi + 2ki

∑
j 6=i

ϵijηiηj

(x−
∫

ym(dy))2ki

2ki

+ 2kiαi

b1 −
∑
j∈I

b2jηj

 (x−
∫

ym(dy))2ki

2ki

+ 2ki(2ki − 1)αi
1
2

σ̃2 (x−
∫

ym(dy))2ki

2ki

+ αi

∫
Θ

[(1 + µ̃)2ki − 1− 2kiµ̃]ν(dθ)(x−
∫

ym(dy))2ki

2ki

+
[
q̄i + r̄iη̄

2k̄i
i − 2k̄ic̄iη̄i

] (
∫

ym(dy))2k̄i

2k̄i

+

2k̄i

∑
j 6=i

ϵ̄ij η̄iη̄j

 (
∫

ym(dy))2k̄i

2k̄i

+ 2k̄iᾱi

b̄1 −
∑

j

b̄2j η̄j

 (
∫

ym(dy))2k̄i−1

2k̄i

+ ϵ̃2. (A.12)

By identification, the coefficients αi solve the following ordinary differential equa-
tion:

0 =α̇i + qi + riη
2ki
i − 2kiciηi + 2ki

∑
j 6=i

ϵijηiηj + 2kiαi[b1 −
∑
j∈I

b2jηj]

+ 2ki(2ki − 1)αi
1
2

σ̃2 + αi

∫
Θ

[(1 + µ̃)2ki − 1− 2kiµ̃]ν(dθ), (A.13a)

αi(T ) = qiT , (A.13b)
0 = ˙̄αi + q̄i + r̄iη̄

2k̄i
i − 2k̄ic̄iη̄i + 2k̄i

∑
j 6=i

ϵ̄ij η̄iη̄j + 2k̄iᾱi[b̄1 −
∑

j

b̄2j η̄j], (A.13c)

ᾱi(T ) = q̄iT . (A.13d)
The aggregate mean-field term

∫
ym(t, dy) can be derived in a semi-explicit way by

taking the expected value of the state dynamics. It follows that∫
ym(t, dy) =

[∫
ym(0, dy)

]
e

∫ t

0

[
b̄1−
∑

j
b̄2j η̄j

]
dt

. ■
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The following Remark discusses the existence and uniqueness of the η terms in
Proposition 3.1.

Remark 3.1. The uniqueness of the coefficient system (A.5) in η requires a strong
condition, i.e.,

0 = −riη
2ki−1
i −

∑
j 6=i

ϵijηj + b2iαi + ci.

• Let I be an arbitrary integer and ki = k = 1, the system in η becomes linear
and has a unique solution if and only if the determinant of the matrix M is
non-zero, with Mii = ri and Mij = ϵij, i 6= j. When the determinant is zero, the
resulting control strategies become non-admissible and the costs become infinite.

• For ki = k = 2, and I = 2 the system in η becomes a binary cubic polynomial
given by

r1η
3
1 + ϵ12η2 − b21α1 − c1 = 0,

r2η
3
2 + ϵ21η1 − b22α2 − c2 = 0.

For ϵ12 = 0 there is a unique solution given by

η1 =
(

b21α1 + c1

r1

) 1
3

, η2 =
(
−ϵ21η1 + b22α2 + c2

r2

) 1
3

.

For ϵ12 6= 0 we derive from the first equation that

η2 = −r1η
3
1 + b21α1 + c1

ϵ12
.

By substituting it to the second equation we arrive at

r2

(
−r1η

3
1 + b21α1 + c1

ϵ12

)3

+ ϵ21η1 − b21α1 − c1 = 0,

The latter equation is a polynomial of odd degree “9”. It has a unique real root
in η1 if its derivative has a constant sign. Its derivative is

ϵ21 − 9r1r2

ϵ12
η2

1

(
−r1η

3
1 + b21α1 + c1

ϵ12

)2

.

It has a constant sign if ϵ21 and r1r2
ϵ12

have opposite signs. If r1 and r2 are
positive then the condition is reduced to

ϵ21ϵ12 ≤ 0.
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4. Multiple Leaders and Multiple Followers

• I = 2 and arbitrary ki ≥ 1. Thus, a sufficiency condition is that ϵji and
(2ki − 1)(2kj − 1) rirj

ϵij
have opposite signs. In particular if ki ≥ 1, kj ≥ 1, ri >

0, rj > 0, then the condition reduces to

ϵijϵji ≤ 0.

• The same reasoning applies to the system in η̄ and has a unique real solution
if

ϵ̄ij ϵ̄ji ≤ 0.

• For I ≥ 3 decision-makers and arbitrary ki ≥ 1 the system can be rewritten
as a fixed-point equation which fulfills a contraction mapping condition if the
norms of r and ϵ are sufficiently small. In this case, there is a unique solution.

□

In the next section, we investigate the bi-level case with multiple leaders and
multiple followers.

4 Multiple Leaders and Multiple Followers
We consider the description in (A.1) in a bi-level hierarchical game with two and
more leaders, i.e., |IL| ≥ 2, and two and more followers, i.e., |IF | ≥ 2.
We restrict our attention to the admissible strategies which are Lipschitz in the state
x. Given the strategies of the leaders (ui)i∈IL

∈ ∏i∈IL
Ui, a risk-neutral best response

strategy of follower j is a strategy that solves infUj
E[Lj]. The set of risk-neutral

best responses of j is denoted by rnBRj((ui)i∈IL
, (uj′)j′∈IF \{j}).

A mean-field-type risk-neutral Nash equilibrium among the followers given the first
movers’ strategies (ui)i∈IL

∈ ∏i∈IL
Ui, is a strategy profile (uj, j ∈ IF ) of all followers

such that for every decision-maker j ∈ IF ,

uj ∈ rnBRj((ui)i∈IL
; (urn

j′ )j′∈IF \{j}).

The followers solve the following Nash game given the strategy of the leaders
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(ui)i∈IL
, i.e.,

j ∈ IF :

0 = V̂j,t(t, m) +
∫

Hr
j (x, m, (V̂j′,m, V̂j′,xm, V̂j′,xxm)j′∈IF

|(ui)i∈IL
)m(dx), (A.14a)

V̂j(t1, m) =
∫

m(dy)hj(y, m), (A.14b)

Hr
j = inf

uj∈Uj

lj + b V̂j,xm + σ2

2
V̂j,xxm + J [V̂j,m]|(ui)i∈IL

. (A.14c)

Then, the leaders solve the following PIDE system:

i ∈ IL :

0 = V̂i,t(t, m) +
∫

Hr
i (x, m, (V̂i′,m, V̂i′,xm, V̂i,xxm)i′∈IL∪IF

)m(dx), (A.15a)

V̂i(t1, m) =
∫

m(dy)hi(y, m), (A.15b)

Hr
i = inf

ui∈Ui

li + b V̂i,xm + σ2

2
V̂i,xxm + J [V̂i,m]|{u∗

j(., (ui)i∈IL
)}j∈IF

, (A.15c)

A minimizer of the integrand Hamiltonian Hr
i , denoted by

uss
i = uss

i (t, x, m, (V̂i′,m, V̂i′,xm, V̂i′,xxm)i′∈IL∪IF
),

provides a candidate Stackelberg strategy of the leader i. A mean-field-type risk-
neutral Stackelberg solution between multiple leaders and multiple followers is a
strategy ((uss

i )i∈IL
, (uss

j )j∈IF
) of all decision-makers such that

i ∈ IL,

uss
i ∈ arg min

ui∈Ui

ELi(x, ui, (uss
i′ )i∈IL\{i}, (uss

j )j∈IF
) :

uss
j ∈ rnBRj((uss

i )i∈IL
; (uss

j′ )j′∈IF \{j}

,

and for every follower

j ∈ IF , uss
j ∈ rnBRj((uss

i )i∈IL
; (uss

j′ )j′∈IF \{j}).

The next result presents the Stackelberg mean-field-type solution involving sev-
eral leaders and followers in a semi-explicit manner.
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Proposition 4.1. The risk-neutral Stackelberg mean-field-type solution with multiple
leaders and multiple followers is given in a semi-explicit way as follows:

uss
j = −ηj

(
x−

∫
ym(dy)

)
− η̄j

∫
ym(dy), j ∈ IF , (A.16a)

j ∈ IF :
0 = −rjη

2kj−1
j −

∑
j′∈IF \{j}

ϵjj′ηj′ −
∑
i∈IL

ϵjiηi + b2jαj + cj,

0 = −r̄j η̄
2k̄j−1
j −

∑
j′∈IF \{j}

ϵ̄jj′ η̄j′ −
∑
i∈IL

ϵ̄jiη̄i + b̄2jᾱj + c̄j,

i ∈ IL:

0 = −riη
2ki−1
i −

∑
i′∈IL\{i}

ϵii′ηi′ −
∑

j∈IF

ϵijηj + b2iαi +
∑

j∈IF

ϵijηi
ϵji

(2kj − 1)rjη
2kj−2
j

−
∑

j∈IF

b2j
ϵji

(2kj − 1)rjη
2kj−2
j

αi + ci,

0 = −r̄iη̄
2k̄i−1
i −

∑
i′∈IL\{i}

ϵ̄ii′ η̄i′ −
∑

j∈IF

ϵ̄ij η̄j + b̄2iᾱi +
∑

j∈IF

ϵ̄ij η̄i
ϵ̄ji

(2k̄j − 1)r̄j η̄
2k̄j−2
j

−
∑

j∈IF

b̄2j
ϵ̄ji

(2k̄j − 1)r̄j η̄
2k̄j−2
j

ᾱi + c̄i,

and

V̂i(0, m) = αi(0)
∫

x

(x−
∫

ym0(dy))2ki

2ki

m0(dx) + ᾱi(0)(
∫

ym0(dy))2k̄i

2k̄i

, (A.16b)

0 = α̇i + qi + riη
2ki
i − 2kiciηi + 2ki

∑
i′∈IL\{i}

ϵii′ηiηi′ + 2ki

∑
j∈IF

ϵijηiηj

+ 2ki

b1 −
∑

i′∈IL

b2i′ηi′ −
∑

j∈IF

b2jηj

αi + 2ki(2ki − 1)αi
1
2

σ̃2

+ αi

∫
Θ

[(1 + µ̃)2ki − 1− 2kiµ̃]ν(dθ), (A.16c)

αi(T ) = qiT , (A.16d)
0 = ˙̄αi + q̄i + r̄iη̄

2k̄i
i − 2k̄ic̄iη̄i + 2k̄i

∑
i′∈IL\{i}

ϵ̄ii′ η̄iη̄i′ + 2k̄i

∑
j∈IF

ϵ̄ij η̄iη̄j

+ 2k̄i

b̄1 −
∑

i′∈IL

b̄2i′ η̄i′ −
∑

j∈IF

b̄2j η̄j

 ᾱi, (A.16e)

ᾱi(T ) = q̄iT , (A.16f)
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with ∫
ym(t, dy) =

[∫
ym(0, dy)

]
e
∫ t

0 [b̄1−
∑

j
b̄2j η̄j ]dt′

, (A.16g)

whenever the above coefficient system admits a unique solution. □

Proof. For the data in (A.1), the integrand Hamiltonian Hr
j has a unique minimizer,

denoted by
u∗

j = u∗
j(t, x, m, (V̂j′,m, V̂j′,xm, V̂j′,xxm)j′∈IF

, (ui)i∈IL
),

which provides the reaction strategies of the follower decision-makers. Following
(A.1) with leaders in IL and followers in IF , the first order optimality condition yields

j ∈ IF ,

0 = rj(uj − ūj)2kj−1 + ci(x− x̄)2ki−1 +
∑

j′∈IF \{j}
ϵjj′(x− x̄)2(kj−1)(uj′ − ūj′)

+
∑
i∈IL

ϵji(x− x̄)2(kj−1)(ui − ūi) +
[
V̂j,xm(t, m)−

∫
V̂j,xm(t, m)(x)m(dx)]

]
b2j,

(A.17a)

0 = r̄jū
2k̄j−1
j + c̄ix̄

2k̄i−1 +
∑

j′∈IF \{j}
ϵ̄jj′x̄2(k̄j−1)ūj′ +

∑
i∈IL

ϵ̄jix̄
2(k̄j−1)ūi

+
[∫

V̂j,xm(t, m)(x)m(dx)
]

b̄2j, (A.17b)

and

j ∈ IF ,∑
i∈IL

ϵjiηi = −rjη
2kj−1
j −

∑
j′∈IF \{j}

ϵjj′ηj′ + b2jαj + cj, (A.18a)

∑
i∈IL

ϵ̄jiη̄i = −r̄j η̄
2k̄j−1
j −

∑
j′∈IF \{j}

ϵ̄jj′ η̄j′ + b̄2jᾱj + c̄j, (A.18b)

which provides {ηj, η̄j}j∈IF
as function of {ηi, η̄i}i∈IL

and α, ᾱ. Following (A.1)
with leaders in IL and followers in IF , the leaders’ integrand Hamiltonian can be
rewritten as follows
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4. Multiple Leaders and Multiple Followers

Hr
i = inf

ui∈Ui

{li + b V̂i,xm}+ σ2

2
V̂i,xxm + J [V̂i,m],

= inf
ui∈Ui

qi
(x− x̄)2ki

2ki

+ ri
(ui − ūi)2ki

2ki

+ ci(x− x̄)2ki−1(ui − ūi)

+
∑

i′∈IL\{i}
ϵii′(x− x̄)2(ki−1)(ui − ūi)(ui′ − ūi′)

+
∑

j∈IF

ϵij(x− x̄)2(ki−1)(ui − ūi)(u∗
j − ū∗

j) + q̄i
x̄2k̄i

2k̄i

+ r̄i
ū2k̄i

i

2k̄i

+ c̄ix̄
2k̄i−1ūi

+
∑

i′∈IL\{i}
ϵ̄ii′x̄2(k̄i−1)ūiūi′ +

∑
j∈IF

ϵ̄ijx̄
2(k̄i−1)ūiū

∗
j

+

b1(x− x̄) +
∑

i′∈IL

b2i′(ui′ − ūi′) +
∑

j∈IF

b2j(u∗
j − ū∗

j)

 V̂i,xm

+ {b̄1x̄ +
∑

i′∈IL

b̄2i′ūi′ +
∑

j∈IF

b̄2jū
∗
j}V̂i,xm + σ2

2
V̂i,xxm + J [V̂i,m]

In view of (A.17), 

∂(u∗
j − ū∗

j)
∂(ui − ūi)

= − ϵji

(2kj − 1)rjη
2kj−2
j

,

∂ū∗
j

∂ūi

= − ϵ̄ji

(2k̄j − 1)r̄j η̄
2k̄j−2
j

,

The optimal Stackelberg strategies of the leaders satisfy the following system:

0 = ri(ui − ūi)2ki−1 + ci(x− x̄)2ki−1 +
∑

i′∈IL\{i}
ϵii′(x− x̄)2(ki−1)(ui′ − ūi′)

+
∑

j∈IF

ϵij(x− x̄)2(ki−1)(u∗
j − ū∗

j)−
∑

j∈IF

ϵij(x− x̄)2(ki−1)(ui − ūi)
ϵji

(2kj − 1)rjη
2kj−2
j

+

b2i −
∑

j∈IF

b2j
ϵji

(2kj − 1)rjη
2kj−2
j

αi(x− x̄)2ki−1,

0 = r̄iū
2k̄i−1
i + c̄ix̄

2k̄i−1 +
∑

i′∈IL\{i}
ϵ̄ii′x̄2(k̄i−1)ūi′ +

∑
j∈IF

ϵ̄ijx̄
2(k̄i−1)ū∗

j

−
∑

j∈IF

ϵ̄ijx̄
2(k̄i−1)ūi

ϵ̄ji

(2k̄j − 1)r̄j η̄
2k̄j−2
j

+

b̄2i −
∑

j∈IF

b̄2j
ϵ̄ji

(2k̄j − 1)r̄j η̄
2k̄j−2
j

 ᾱix̄
2k̄i−1,

whose solution provides the coefficients (ηss
i , η̄ss

i )i∈L. ■
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Remark 4.1. Clearly, the mean-field-type Nash equilibrium in (A.5) differs from the
Stackelberg solution in (A.16) when the ϵij are non-zero. □

No control-coupling within classes
It follows from (A.16) that, for ϵjj′ = 0 = ϵ̄jj′ for (j, j′) ∈ I2

F , the term ηj is explicitly
given by

ηj =
{
−∑i∈IL

ϵjiηi + b2jαj + cj

rj

} 1
2kj −1

,

and

η̄j =
{
−∑i∈IL

ϵ̄jiη̄i + b̄2jᾱj + c̄j

r̄j

} 1
2k̄j −1

.

No Leader and All Followers

In this case, there is no leader. All decision-makers are followers. This case is similar
to the model proposed in the Nash game above. The solution is given by (A.5).

One Leader and Multiple Followers

There is a unique leader in IL, and the remaining decision-makers in IF are followers.
I = IL ∪ IF . We assume that, the leader (decision-maker 1 ∈ IL) uses a state-and-
mean-field type feedback strategy u1(t, x, m) and each of the followers (decision-
maker j ∈ IF ) finds state-and-mean-field type feedback strategy uj(t, x, m, u1) given
u1. The followers solve a Nash game given the strategy of the leader u1.

Multiple Leaders and One Follower

Since there is only one follower the reaction set of the follower will be computed
given the strategies of the leaders.

All Leaders and No Follower

In this case, there is no follower. All decision-makers are leaders. In terms of infor-
mation structure, this case is similar to the model proposed in the Nash game above.
The solution is given by (A.5).
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5 Fully hierarchical game
In the previous sections, we had only bi-level game problems. In this section we
make as many levels as the number of decision-makers. There are |I| hierarchical
levels. At each layer i, decision-maker i chooses a control strategy ui knowing the
control strategy of the preceding decision-makers i.e., {i− 1, . . . , 1}. This becomes a
sequential decision-making problem. We use a backward induction method to solve
the hierarchical game problem. This means that, the decision-making problem at the
last layer I, which is the reaction of decision-maker I, can be seen as a mean-field-
type control problem. This is because at the i−th level, the strategies (ui′)i′∈{1,...,i−1}
are already known by decision-maker i.

The Proposition 5.1 next, presents the multi-level hierarchical-structure solution
in the context of mean-field-type games in a semi-explicit manner.

Proposition 5.1. The risk-neutral I−level hierarchical mean-field-type solution is
given in a semi-explicit way as follows:

uhs
i = −ηi

(
x−

∫
ym(dy)

)
− η̄i

∫
ym(dy), i ∈ I, (A.19a)

V̂i(0, m) = αi(0)
∫

x

(x−
∫

ym0(dy))2ki

2ki

m0(dx) + ᾱi(0)(
∫

ym0(dy))2k̄i

2k̄i

, (A.19b)

with ∫
ym(t, dy) =

[∫
ym(0, dy)

]
e

∫ t

0

[
b̄1−
∑

j
b̄2j η̄j

]
dt

, (A.19c)

where the coefficient functions are given by
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Level 1 :

0 = −r1η
2k1−1
1 + c1 −

I∑
j=2

ϵ1,jηj +
I∑

j=2
ϵ1,jηi

ϵji

(2kj − 1)rj

η
−2(kj−1)
j

+

b2,1 −
I∑

j=2
b2j

ϵj1

(2kj − 1)rj

η
−2(kj−1)
j

α1,

0 = α̇1 + q1 + r1η
2k1
1 − 2k1c1η1 + 2k1

I∑
j=2

ϵ1jη1ηj + 2k1{b1 − b21η1 −
I∑

j=2
b2jηj}α1

+ 2k1(2k1 − 1)α1
1
2

σ̃2 + α1

∫
Θ

[(1 + µ̃)2k1 − 1− 2k1µ̃]ν(dθ),

α1(T ) = q1T ,

0 = −r̄1η̄
2k̄1−1
1 + c̄1 −

I∑
j=2

ϵ̄1,j η̄j +
I∑

j=2
ϵ̄1,j η̄1

ϵ̄j1

(2k̄j − 1)r̄j

η̄
−2(k̄j−1)
j

+

b̄21 −
I∑

j=2
b̄2j

ϵ̄j1

(2k̄j − 1)r̄j

η̄
−2(k̄j−1)
j

 ᾱ1,

0 = ˙̄α1 + q̄1 + r̄1η̄
2k̄1
1 − 2k̄1c̄1η̄1 + 2k̄1

I∑
j=2

ϵ̄1j η̄iη̄j + 2k̄1{b̄1 − b̄21η̄1 −
I∑

j=2
b̄2j η̄j}ᾱ1,

ᾱ1(T ) = q̄1T .
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Level i :

0 = −riη
2ki−1
i + ci −

i−1∑
i′=1

ϵI−1,i′ηi′ −
I∑

j=i+1
ϵi,jηj +

I∑
j=i+1

ϵi,jηi
ϵji

(2kj − 1)rj

η
−2(kj−1)
j

+

b2i −
I∑

j=i+1
b2j

ϵji

(2kj − 1)rj

η
−2(kj−1)
j

αi,

0 = α̇i + qi + riη
2ki
i − 2kiciηi + 2ki

i−1∑
i′=1

ϵii′ηiηi′ + 2ki

I∑
j=i+1

ϵijηiηj

+ 2ki{b1 −
i−1∑
i′=1

b2i′ηi′ − b2iηi −
I∑

j=i+1
b2jηj}αi + 2ki(2ki − 1)αi

1
2

σ̃2

+ αi

∫
Θ

[(1 + µ̃)2ki − 1− 2kiµ̃]ν(dθ),

αi(T ) = qiT ,

0 = −r̄iη̄
2k̄i−1
i + c̄i −

i−1∑
i′=1

ϵ̄I−1,i′ η̄i′ −
I∑

j=i+1
ϵ̄i,j η̄j +

I∑
j=i+1

ϵ̄i,j η̄i
ϵ̄ji

(2k̄j − 1)r̄j

η̄
−2(k̄j−1)
j

+

b̄2i −
I∑

j=i+1
b̄2j

ϵ̄ji

(2k̄j − 1)r̄j

η̄
−2(k̄j−1)
j

 ᾱi,

0 = ˙̄αi + q̄i + r̄iη̄
2k̄i
i − 2k̄ic̄iη̄i + 2k̄i

i−1∑
i′=1

ϵ̄ii′ η̄iη̄i′ + 2k̄i

I∑
j=i+1

ϵ̄ij η̄iη̄j

+ 2k̄i

b̄1 −
i−1∑
i′=1

b̄2i′ η̄i′ − b̄2iη̄i −
I∑

j=i+1
b̄2j η̄j

 ᾱi,

ᾱi(T ) = q̄iT .
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Level I :

ηI =
(
−∑I−1

j=1 ϵI,jηj + b2IαI + cI

rI

) 1
2kI −1

,

0 = α̇I + qI + rIη2kI
I − 2kIcIηI + 2kI

I−1∑
i′=1

ϵIi′ηIηi′ + 2kI{b1 −
I−1∑
i′=1

b2i′ηi′ − b2IηI}αI

+ 2kI(2kI − 1)αI
1
2

σ̃2 + αI

∫
Θ

[(1 + µ̃)2kI − 1− 2kI µ̃]ν(dθ),

αI(T ) = qIT ,

η̄I =
(
−∑I−1

j=1 ϵ̄I,j η̄j + b̄2I ᾱI + c̄I

r̄I

) 1
2k̄I −1

,

0 = ˙̄αI + q̄I + r̄I η̄2k̄I
I − 2k̄I c̄I η̄I + 2k̄I

I−1∑
i′=1

ϵ̄Ii′ η̄I η̄i′ + 2k̄I{b̄1 −
i−1∑
i′=1

b̄2i′ η̄i′ − b̄2I η̄I}ᾱI ,

ᾱI(T ) = q̄IT ,

whenever these equations admit a solution. □

Proof. We use a backward induction procedure to prove the statement.

I-th hierarchical level:

When decision-maker I optimizes the preceding decision-makers have already chosen
their strategy and that is known by I. Hence, integrand Hamiltonian of I is

HI = inf
uI∈UI

{lI + b V̂I,xm}+ σ2

2
V̂I,xxm + J [V̂I,m]

= inf
uI∈UI

qI
(x− x̄)2kI

2kI

+ rI
(uI − ūI)2kI

2kI

+ cI(x− x̄)2kI−1(uI − ūI)

+
I−1∑
i′=1

ϵI,i′(x− x̄)2(kI−1)(uI − ūI)(ui′ − ūi′) +
[
b1(x− x̄) +

I−1∑
i′=1

b2i′(ui′ − ūi′)
]

V̂I,xm

+ b2,I(uI − ūI)V̂I,xm + q̄I
x̄2k̄I

2k̄I

+ r̄I
ū2k̄I

I

2k̄I

+ c̄I x̄2k̄I−1ūI +
I−1∑
i′=1

ϵ̄I,i′x̄2(k̄I−1)ūI ūi′

+
[
b̄1x̄ +

I−1∑
i′=1

b̄2i′ūi′ + b̄2,I ūI

]
V̂I−1,xm + σ2

2
V̂I,xxm + J [V̂I,m].
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5. Fully hierarchical game

It follows from strictly convex optimization above that the best response strategy
can be expressed as:

u∗
I − ū∗

I = −ξ
1

2kI −1
1 ,

ū∗
I = −ξ

1
2k̄I −1
2 ,

where

ξ1 = 1
rI

 I−1∑
i′=1

ϵI,i′(x− x̄)2(kI−1)(ui′ − ūi′) + b2,I V̂I,xm + cI(x− x̄)2kI−1

,

ξ2 = 1
r̄I

 I−1∑
i′=1

ϵ̄I,i′x̄2(k̄I−1)ūi′ + b̄2,I V̂I,xm + c̄I x̄2k̄I−1

.

In particular,

i ≤I − 1 :
∂(u∗

I − ū∗
I)

∂(ui − ūi)
= ϵI,i

(2kI − 1)rI

(x− x̄)2(kI−1)(u∗
I − ū∗

I)−2(kI−1), (A.23a)

∂ū∗
I

∂ūi

= ϵ̄I,i

(2k̄I − 1)r̄I

x̄2(k̄I−1)(ū∗
I)−2(k̄I−1). (A.23b)

If the preceding decision-makers {1, 2, . . . , I−1} have all used linear state-and-mean-
field feedback strategies then the reaction of the I-th decision-maker who is at I-th
level of hierarchy can be rewritten as

useq
I = −ηI

(
x−

∫
ym(dy)

)
− η̄I

∫
ym(dy),

ηI =
(
−∑I−1

j=1 ϵI,jηj + b2IαI + cI

rI

) 1
2kI −1

,

η̄I =
(
−∑I−1

j=1 ϵ̄I,j η̄j + b̄2I ᾱI + c̄I

r̄I

) 1
2k̄I −1

.

(I − 1)-th hierarchical level

At the hierarchical level I − 1, the preceding levels are {1, 2, . . . , I − 2} and the
succeeding level is I. Having the expression of the optimal control strategies of the
last layer I we can move to the preceding layer, i.e., I − 1. Decision-maker I − 1
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has u1, . . . , uI−2 and the reaction u∗
I of decision-maker I. Therefore, the integrand

Hamiltonian of I − 1 is given by

Hr
I−1 = inf

uI−1∈UI−1
{li + b V̂I−1,xm}+ σ2

2
V̂I−1,xxm + J [V̂I−1,m]

= inf
uI−1∈UI−1

rI−1
(uI−1 − ūI−1)2kI−1

2kI−1
+ qI−1

(x− x̄)2kI−1

2kI−1

+ cI−1(x− x̄)2kI−1−1(uI−1 − ūI−1)

+
I−2∑
i′=1

ϵI−1,i′(x− x̄)2(kI−1−1)(uI−1 − ūI−1)(ui′ − ūi′)

+ ϵI−1,I(x− x̄)2(kI−1−1)(uI−1 − ūI−1)(u∗
I − ū∗

I)

+

b1(x− x̄) +
I−2∑
i′=1

b2i′(ui′ − ūi′) + b2,I−1(uI−1 − ūI−1) + b2I(u∗
I − ū∗

I)

V̂I−1,xm

+ q̄I−1
x̄2k̄I−1

2k̄I−1
+ r̄I−1

ū
2k̄I−1
I−1

2k̄I−1
+ c̄I−1x̄

2k̄I−1−1ūI−1 +
I−2∑
i′=1

ϵ̄I−1,i′x̄2(k̄I−1−1)ūI−1ūi′

+ ϵ̄I−1,I x̄2(k̄I−1−1)ūI−1ū
∗
I + {b̄1x̄ +

I−2∑
i′=1

b̄2i′ūi′ + b̄2,I−1ūI−1 + b̄2I ū∗
I}V̂I−1,xm

+ σ2

2
V̂I−1,xxm + J [V̂I−1,m]

In view of (A.23), the terms with ū∗
I depend on ūI−1, ūI−2, . . ., ū1. The first-order

optimality condition for u∗
I−1 yields

0 = −rI−1η
2kI−1−1
I−1 + cI−1 −

I−2∑
i′=1

ϵI−1,i′ηi′ − ϵI−1,IηI

+ ϵI−1,IηI−1
ϵI,I−1

(2kI − 1)rI

η
−2(kI−1)
I +

{
b2,I−1 − b2I

ϵI,I−1

(2kI − 1)rI

η
−2(kI−1)
I

}
αI−1,

0 = −r̄I−1η̄
2k̄I−1−1
I−1 + c̄I−1 −

I−2∑
i′=1

ϵ̄I−1,i′ η̄i′ − ϵ̄I−1,I η̄I

+ ϵ̄I−1,I η̄I−1
ϵ̄I,I−1

(2k̄I − 1)r̄I

η̄
−2(k̄I−1)
I +

{
b̄2,I−1 − b̄2,I

ϵ̄I,I−1

(2k̄I − 1)r̄I

η̄
−2(k̄I−1)
I

}
ᾱI−1,

where we have used (A.23) for i = I − 1.

useq
I−1 = −ηI−1

(
x−

∫
ym(dy)

)
− η̄I−1

∫
ym(dy). (A.24)

66



5. Fully hierarchical game

i-th hierarchical level

For i ∈ {2, . . . , I − 2},

Hr
i = inf

ui∈Ui

qi
(x− x̄)2ki

2ki

+ ri
(ui − ūi)2ki

2ki

+ ci(x− x̄)2ki−1(ui − ūi)

+
i−1∑
i′=1

ϵii′(x− x̄)2(ki−1)(ui − ūi)(ui′ − ūi′) +
I∑

j=i+1
ϵij(x− x̄)2(ki−1)(ui − ūi)(u∗

j − ū∗
j)

+

b1(x− x̄) +
i−1∑
i′=1

b2i′(ui′ − ūi′) + b2i(ui − ūi) +
I∑

j=i+1
b2j(u∗

j − ū∗
j)

V̂i,xm

+ q̄i
x̄2k̄i

2k̄i

+ r̄i
ū2k̄i

i

2k̄i

+ c̄ix̄
2k̄i−1ūi +

i−1∑
i′=1

ϵ̄ii′x̄2(k̄i−1)ūiūi′ +
I∑

j=i+1
ϵ̄ijx̄

2(k̄i−1)ūiū
∗
j

+

b̄1x̄ +
i−1∑
i′=1

b̄2i′ūi′ + b̄2iūi +
I∑

j=i+1
b̄2jū

∗
j

 V̂i,xm + σ2

2
V̂i,xxm + J [V̂i,m].

By identification from the first-order optimality condition the coefficient functions
ηi, η̄i satisfy the following equations

0 = −riη
2ki−1
i + ci −

i−1∑
i′=1

ϵI−1,i′ηi′ −
I∑

j=i+1
ϵi,jηj +

I∑
j=i+1

ϵi,jηi
ϵji

(2kj − 1)rj

η
−2(kj−1)
j

+

b2i −
I∑

j=i+1
b2j

ϵji

(2kj − 1)rj

η
−2(kj−1)
j

αi,

0 = −r̄iη̄
2k̄i−1
i + c̄i −

i−1∑
i′=1

ϵ̄I−1,i′ η̄i′ −
I∑

j=i+1
ϵ̄i,j η̄j +

I∑
j=i+1

ϵ̄i,jηi
ϵ̄ji

(2k̄j − 1)r̄j

η̄
−2(k̄j−1)
j

+

b̄2i −
I∑

j=i+1
b̄2j

ϵ̄ji

(2k̄j − 1)r̄j

η̄
−2(k̄j−1)
j

 ᾱi,

1-st hierarchical level We now examine first level of the hierarchy. The integrand
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Hamiltonian of decision-maker 1 is

Hr
1 = inf

u1∈U1
q1

(x− x̄)2k1

2k1
+ r1

(u1 − ū1)2k1

2k1
+ c1(x− x̄)2k1−1(u1 − ū1)

+
I∑

j=2
ϵ1j(x− x̄)2(k1−1)(u1 − ū1)(u∗

j − ū∗
j) +

b1(x− x̄) + b21(u1 − ū1)

V̂1,xm

+


I∑

j=2
b2j(u∗

j − ū∗
j)

V̂1,xm + q̄1
x̄2k̄1

2k̄1
+ r̄1

ū2k̄1
1

2k̄1
+ c̄1x̄

2k̄1−1ū1 +
I∑

j=2
ϵ̄1jx̄

2(k̄1−1)ū1ū
∗
j

+

b̄1x̄ + b̄21ū1 +
I∑

j=2
b̄2jū

∗
j

 V̂1,xm + σ2

2
V̂1,xxm + J [V̂1,m].

By identification from the first-order optimality condition the coefficient functions
η1, η̄1 satisfy the following equations

0 = −r1η
2k1−1
1 + c1 −

I∑
j=2

ϵ1jηj +
I∑

j=2
ϵ1jη1

ϵj1

(2kj − 1)rj

η
−2(kj−1)
j

+

b21 −
I∑

j=2
b2j

ϵj1

(2kj − 1)rj

η
−2(kj−1)
j

α1,

0 = −r̄1η̄
2k̄1−1
1 + c̄1 −

I∑
j=2

ϵ̄1j η̄j +
I∑

j=2
ϵ̄1j η̄1

ϵ̄j1

(2k̄j − 1)r̄j

η̄
−2(k̄j−1)
j

+

b̄21 −
I∑

j=2
b̄2j

ϵ̄j1

(2k̄j − 1)r̄j

η̄
−2(k̄j−1)
j

 ᾱ1.

Putting all together we arrive at the announced statement. ■

From the analysis above the following remarks are in order:

• For ϵij 6= 0, ϵ̄ij 6= 0, the order of the play matters because of the informational
difference between the decision-makers at different levels of hierarchy in (A.19).
One open question that we leave for future investigation is: How to determine
the optimal ordering among all permutations of heterogenous decision-makers?

• When all the ϵij and ϵ̄ij are zero, the Nash equilibrium coincides with the bi-
level solution, which coincides with any level hierarchical solution. The order
of the play and the informational difference do not generate an extra advantage
for the first mover in this particular case. Consequently, the hierarchical leader
design is only performed when the parameters ϵij 6= 0, ϵ̄ij 6= 0.

68



6. Numerical Investigation

6 Numerical Investigation
In this section, we perform some numerical examples in order to analyze two main
scenarios. We study the effect of the number of leaders on the total cost for both
homogeneous and heterogeneous scenarios, and we investigate the effect of the hier-
archical structure considering a heterogeneous scenario.

6.1 Effect of the number of leaders on the total cost
We investigate the effect of the number of leaders on the total performance of the
system. The total cost at the Stackelberg solution is

S(IL, m0) =
∑
i∈IL

V̂i(0, m0) +
∑

j∈IF

V̂j(0, m0).

For m0 = δx0 , and k̄i = k̄ ≥ 1, the total cost is

S(IL, m0) =

∑
i∈IL

ᾱi(0) +
∑

j∈IF

ᾱj(0)

 x2k̄
0

2k̄
.

Uniform coupling and homogeneous players

When all other parameters are identical across the players except their role, S(IL, m0)
can be expressed as a function |IL|. It follows from (A.16) that

χ := |IL|,
0 = −r̄(η̄fo)2k̄−1 − (|I| − χ− 1)ϵ̄η̄fo − χϵ̄η̄lead + b̄2ᾱ

fo + c,

0 =− r̄(η̄lead)2k̄−1 − (χ− 1)ϵ̄η̄lead − (|I| − χ)ϵ̄η̄fo + b̄2ᾱ
lead

+ c̄ + ϵ̄(|I| − χ)(ϵ̄η̄lead − ᾱleadb̄2)
(2k̄ − 1)r̄(η̄fo)2k̄−2

,

ᾱlead(t0) = q̄t1 +
∫ t1

t0

q̄ + r̄(η̄lead)2k̄ − 2k̄c̄η̄lead + 2k̄ϵ̄η̄lead[(χ− 1)η̄lead

+ (|I| − χ)η̄fo] + 2k̄ᾱlead[b̄1 − b̄2η̄
leadχ− b̄2η̄

fo(|I| − χ)]

dt

ᾱfo(t0) = q̄t1 +
∫ t1

t0

q̄ + r̄(η̄fo)2k̄ − 2k̄c̄η̄fo + 2k̄ϵ̄η̄fo[(|I| − χ− 1)η̄fo + χη̄lead]

+ 2k̄ᾱfo[b̄1 − b̄2η̄
leadχ− b̄2η̄

fo(|I| − χ)]

dt.
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The optimal number of leaders is given by

|IL| ∈ arg min
χ

[χᾱlead(0) + (|I| − χ)ᾱfo(0)],

where ᾱ depends on χ as well. We observe that the latter function is not necessarily
monotone in χ = |IL|. This means that increasing the number of leaders in the
interaction does not necessarily improve the total performance of the system.

We numerically investigate S(|IL|, δx0) as a function of χ = |IL| for |I| = 6. Let
us consider a symmetric six-player game problem involving the parameters presented
here:

c̄i = c̄ = 0,∀i ∈ I, k̄i = k̄ = 1,∀i ∈ I,

ϵ̄i = ϵ̄ = 1,∀i ∈ I, b2i = b2 = 0.1,∀i ∈ I,

b̄2i = b̄2 = 0.5,∀i ∈ I, r̄i = r̄ = 2,∀i ∈ I,

q̄i = q̄ = 1,∀i ∈ I, q̄iT = q̄T = 2,∀i ∈ I,

T = 0.1.

Table A.1: Summary of ᾱleader
0 , ᾱfollower

0 , and S(|IL|, δx0) for the different number of
leaders in the homogeneous scenario.

Leader(s)-Follower(s)
Structure

Individual leader cost 3.132 3.37 9.772 3.107 2.968
Individual follower cost 1.217 0.2931 0.3481 2.933 3.562
Total cost 9.219 7.911 30.36 18.29 18.4

Figure A.5 presents the evolution of both ˙̄αleader and ˙̄αfollower for different number
of leaders |IL|. Notice that, the initial values ᾱleader

0 and ᾱfollower
0 determine the

optimal cost considering that

x̄0 = x̄(0) =
∫

ym(0, dy) =
∫

yδx0(dy) = x0. (A.25)

Figure A.5 and Table A.1 also show that, under the considered parameters, the
lowest total cost is obtained when |IL| = 2, corresponding to a cost S(|IL|, δx0) =
7.911. These results offer insight into the structure-game design for the sake of either
individual or total costs. We observe that having only a leader is suboptimal for the
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Fig. A.5: Evolution of the differential equations ˙̄αleader/follower, and the corresponding
initial values for different numbers of leaders in the homogeneous scenario.

total cost. Having too many leaders (the majority of the decision-makers as leaders)
is not suboptimal for the total cost. In this setting, there is a tradeoff between leaders
and followers so that the system’s cost gets balanced.
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Uniform coupling and heterogeneous players

Now we investigate the two-layer case with uniform coupling, i.e., ϵ̄ij = 0.1, for all
combinations i, j ∈ I and for the heterogeneous case with |I| = 3.
We consider the following parameters:

b21 = 0.1, b22 = 0.2, b23 = 0.3,

b̄21 = 0.5, b̄22 = 0.6, b̄23 = 0.7,

r̄1 = 2, r̄2 = 2.1, r̄3 = 2.2,

q̄1 = 1, q̄2 = 2, q̄3 = 3,

q̄1T = 4, q̄2T = 6, q̄3T = 8,

b̄1 = 2, T = 1, k̄i = k̄ = 1, ∀i ∈ I,

Figure A.6 shows the evolution of ᾱ1, ᾱ2, and ᾱ3 for the different topologies presented
in Table A.2. It can be seen in Figure A.7 that all the structures return a close value
for the total cost. However, Table A.2 shows that the best topology is the last one
where the third player acts as the unique leader assuming an initial condition such
that (A.25) holds.

Table A.2: Summary of ᾱleader
0 , ᾱfollower

0 , and S(|IL|, δx0) for the different number of
leaders in the heterogeneous scenario.

Leader(s)-Follower(s)
Structure

Leaders {1}{2} {1}{3} {2}{3} {1} {2} {3}
Followers {3} {2} {1} {2}{3} {1}{3} {1}{2}
Total cost 17.14 16.96 16.99 17.04 17.13 16.92
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Fig. A.6: Evolution of the differential equations ˙̄αleader/follower, and the corresponding
initial values for different numbers of leaders in the heterogeneous scenario.
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Fig. A.7: Evolution of the sum of differential equations and the corresponding total
cost for the heterogeneous scenario.
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6.2 Impact of the Hierarchical Structures
Here, we analyze the impact on the order of the strategic selection, i.e., the hier-
archical order on the heterogeneous case with |I| = 3. We consider the following
heterogeneous parameters:

b21 = 0.1, b22 = 0.2, b23 = 0.3,

b̄21 = 0.4, b̄22 = 0.5, b̄23 = 0.6,

r̄1 = 1, r̄2 = 2, r̄3 = 3,

q̄1 = 1.1, q̄2 = 1.2, q̄3 = 1.3,

q̄1T = 2.1, q̄2T = 2.2, q̄3T = 2.3,

b̄1 = 2, T = 0.1, k̄i = k̄ = 1, ∀i ∈ I,

and

ϵ̄ =

 1 1.2 1.1
1.5 1 1.6
1.3 1.4 1

 .

Table A.3 shows the summary of the total costs for the six different possible
hierarchical orders assuming an initial condition such that (A.25) holds. It can be
seen that the third configuration is the best to minimize the total cost. Moreover,
Figure A.8 presents the evolution of the equations ∑j∈I ˙̄αj(t) for all the possible
structures.

Table A.3: Total cost for the different hierarchical orders in a three-player case in
the heterogeneous scenario.

Hierarchical
Structure

Combination label 1 2 3 4 5 6
Hierarchical order {1}{2}{3} {1}{3}{2} {2}{1}{3} {2}{3}{1} {3}{1}{2} {3}{2}{1}
Total cost 6.124 7.464 5.864 8.757 6.894 8.433
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Fig. A.8: Evolution of the differential equations ∑j∈I ˙̄αj(t), and the corresponding
initial values for different hierarchical structures in the heterogeneous scenario.

7 Conclusion
We have examined multi-layer hierarchical mean-field-type games with non-quadratic
polynomial costs. We derived hierarchical mean-field-type solutions in the linear
state-and-mean-field feedback form by using a partial integro-differential system, and
we have established the relationship between the Nash and the hierarchical solutions.

Furthermore, we have studied the impact of the number of leaders on a bi-level
Stackelberg problem for both symmetric and non-symmetric scenarios. In addition,
we have shown that the number of layers, permutations of the decision-makers per
layer, and their identity affect significantly the total cost of the system. We have
also shown numerically that the ordering among all permutations of heterogenous
decision-makers may reduce the cost by a significant proportion depending on the
horizon.
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1. Introduction

Abstract
This paper solves a mean-field type hierarchical optimal control problem in the elec-
tricity market. We consider n − 1 prosumers and one producer. The ith prosumer,
for 1 < i < n, is a leader of the (i− 1)th prosumer and is a follower of the (i + 1)th
prosumer. The first player (agent) is the follower at the bottom whereas the nth is
the leader at the top. The problem is described by a linear jump-diffusion system of
conditional mean-field type, where the conditioning is with respect to common noise,
and a quadratic cost functional involving the second moment, the square of the con-
ditional expectation of the controls of the agents. We provide a semi-explicit solution
to the corresponding mean-field-type hierarchical control problem with common noise.
Finally, we illustrate the obtained result via a numerical example with two different
scenarios.

1 Introduction
Leader-follower games were first introduced by Stackelberg (Stackelberg, 1948) in
1934, to model markets where some firms have a stronger influence on others. Stack-
elberg games are non-zero-sum static games with a two-level hierarchy as they consist
of two players, a major player (the leader) and a minor player (the follower). The
minor player chooses a response strategy (assumed rational), for any announced
strategy from the major player, such that her own performance criterion is opti-
mized. The major player predicts the best response of the minor player and chooses
a strategy to optimize her performance criterion (assuming that she knows the per-
formance criterion of the minor player). A dynamic LQ Stackelberg differential game
was studied by samaan and cruz (Simaan & Cruz, 1973a). The stochastic LQ Stack-
elberg differential game was investigated by Bagchi and Basar in (Bagchi & Basar,
1981).

For n > 2 the leader-follower problem is called multi-hierarchical, each player is
a leader for the previous one and a follower of the next player in the hierarchy. The
first and the last players are the leader at the top and the follower at the bottom,
respectively. For multi-hierarchical differential games, see e.g. (Pan & Yong, 1991;
Li & Yu, 2018; Simaan & Cruz, 1973b; Cruz, 1978; Gardner & Cruz, 1978; Basar &
Selbuz, 1979).

In the present paper we study a stochastic mean-field type Cournot hierarchical
control problem of n − 1 electricity prosumers (followers-leaders at different lev-
els) and one electricity producer (leader at the top). The considered electricity price
model is the same as in (Djehiche, Barreiro-Gomez, & Tembine, 2020), where the au-
thors formulated a stochastic mean-field-type dynamic Cournot game between elec-
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tricity producers, based on similar deterministic models (e.g. (Evans, 1922; Ross,
1925)). We refer the reader to (B. F. Hobbs & Pang, 2007; Metzler, Hobbs, &
Pang, 2003; B. E. Hobbs, 2001; Willems, 2002; Hogan, 1997), for research involving
Cournot-based models for the electricity market. There are other works develop-
ing an application of mean field control involving price dynamics. For instance, in
(Wanga & Huang, 2019), mean field control is designed to optimize over dynamic
production considering sticky price and risk-free profit.
Our problem is described by a linear jump-diffusion system of conditional mean-field
type and a quadratic cost functional. The goal of this work is to, first, find the
optimal solutions to the mean-field type hierarchical control problem and, second,
to investigate the effect of the hierarchy on the solutions. We summarize our con-
tribution as follows. We formulate a mean-field-type hierarchical control problem
with common noise and jump-diffusion. We provide semi-explicit solution with a
structure in state-and-mean-field feedback form, using a direct method consisting
of square completion technique. Finally, we present a numerical example with 3
agents under two different scenarios (a homogeneous case as well as a heterogeneous
case), to validate our theoretical results and investigate the effect of the hierarchy
on the optimal solutions and the revenues for each agent. The rest of this paper is
organized as follows. The next section introduces the setup for the model and the
key quantities. In section 3 we present the hierarchical mean-field type problem.
Section 4 presents the main results. In section 5, we present a numerical example
with different scenarios. Section 6 concludes the paper.

2 The Setup
We consider a hierarchical mean-field type control problem described by the following
settings. Let T := [0, T ] be the time horizon with T > 0. The energy market in our
model is described by n ≥ 2 agents, one producer, and n − 1 prosumers following
a hierarchical structure. Each agent i ∈ {1, . . . , n}, at time t ∈ T , has an output
ui(t) ≥ 0. The log-price dynamics, as modeled in (Djehiche et al., 2020), are given
by p(0) = p0 and

dp(t) = s[a−D(t)− p(t)]dt +
(

σdB(t) +
∫

θ∈Θ
µ(θ)Ñ(dt, dθ)

)
+ σ0dB0(t), (B.1)

where
D(t) :=

n∑
i=1

ui(t),

is the supply at time t and

Ñ(dt, dθ) = N(dt, dθ)− v(dθ)dt,
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is a compensated martingale and v is assumed to be a radon measure over Θ. The
process N is a jump process with Levy measure v(dθ) such that∫

Θ
µ2(θ)v(dθ) < +∞.

The processes B and B0 are standard Brownian motions representing, respectively,
a local and a global noise in the model. It is assumed that all these processes are
mutually independent and the global noise is observed by all agents. Denote by FB0

t

the filtration generated by the observed common noise up to time t. The number s
is positive and the quantities a, σ, σ0 are fixed parameters. We assume that initial
distribution of p0 is square integrable.
The conditional price p̄(t) := E[p(t)|FB0

t ], 0 ≤ t ≤ T ), which is driven by the
common noise B0, solves the following stochastic differential equation

dp̄(t) = s[a− D̄(t)− p̄(t)]dt + σ0dB0(t),
p̄(0) = p̄0,

where
D̄(t) :=

n∑
i=1

ūi(t).

At time t ∈ T , agent i gains p̄(t)ui(t) − Ci(ui(t)) where Ci : R → R, represents
her instant cost given by

Ci(ui) = ciui(t) + riu
2
i (t)
2

+ r̄iū
2
i (t)
2

.

The term ūi(t) = E[ui(t)|FB0
t ] is the conditional expectation of agent i’s output

given the common noise B0 (the global uncertainty). The payoff functional (or the
long-term revenue) of each agent i is

Ri(p0, u1(t), . . . , un(t)) = −q

2
e−λiT (p(T )− p̄(T ))2 +

∫ T

0
e−λit[p̄(t)ui(t)− Ci(ui(t))]dt,

where ci, ri, r̄i and q are non-negative parameters and λi is a discount factor for the
agent i.
Note that all agents are coupled through the price functional. Furthermore, the
payoff functional is of mean-field type since it involves two conditional mean-field
terms: p̄(t) and ū2

i (t) based on the observations of the common noise B0 up to t. For
ease of notation, we dropped the dependence on t for: p, p̄, u, ū, D, D̄, B and B0.
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3 Hierarchical mean-field type control problem
The hierarchical control problem we consider consists of the following leader-follower
order: given n − 1 prosumers and one producer, the ith prosumer is a leader of
the (i − 1)th prosumer and is a follower of the (i + 1)th prosumer, for 1 < i < n.
When considering only two levels in the strategic interaction, i.e., a unique producer
and a unique prosumer, the hierarchical mean-field-type control problem becomes
a Stackelberg problem as in (Li & Yu, 2018). Here, we address the solution for n
levels including the bi-level Stackelberg problem. The nth agent (the producer) is
the leader at the top level and the 1st prosumer is the follower at the bottom level.
More precisely, denote

Ui = L2
Fp0,p,B0 ([0, T ]× R,R)

the set of square integrable, Fp0,p,B0-progressively measurable feedback controls, all
the agents aim to maximize their revenues as follows:

For given ui ∈ Ui, i ∈ {2, . . . , n}, Prosumer 1 aims to find her optimal control

u∗
1 = u∗

1(u2, . . . , un) ∈ U1,

such that
E[R1(p0, u∗

1, . . . , un)] = sup
u1∈U1

E[R1(p0, u1, . . . , un)],

under the dynamics in (B.1). Then, given the optimal control of the 1st prosumer,
Prosumer 2 finds her optimal control

u∗
2 = u∗

2(u3, . . . , un) ∈ U2,

such that

E[R2(p0, u∗
1, u∗

2, . . . , un)] = sup
u2∈U2

E[R2(p0, u∗
1(u2, . . . , un), u2, . . . , un)],

under the log-price dynamics

dp = s[a−D∗ − p]dt +
(

σdB +
∫

θ∈Θ
µ(θ)Ñ(dt, dθ)

)
+ σ0dB0, (B.2)

where
D∗(t) := u∗

1(t) +
n∑

i=2
ui(t).

Thereby, we can define u∗
1, u∗

2, . . . , u∗
n inductively and the producer’s optimal control

u∗
n will not depend on the controls of the n− 1 prosumers.

The same model remarks discussed in (Djehiche et al., 2020) are applicable to the
price dynamics considered in this hierarchical game problem as presented next.
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• This log-price dynamics model can be re-interpreted as an error to the standard
inverse demand model.

• The constant s allows us to navigate between several regimes.

• The jump term Ñ captures some of the big changes in the market that may
happen randomly, e.g., regulation law change.

• The global uncertainty Bo captures common noise in the market, for example,
weather conditions and temperature field in specific season.

• The conditional log-price is calculated based on the common noise that is
observed. The revenue is computed from the conditional log-price.

• This revenue model is similar to the one considered by Jovanovic (see page 652
in (Jovanovic, 1982)) who studied discrete-time mean-field games for selection
and evolution industry. Therein the conditional state appears as well. However,
(Jovanovic, 1982) considered that firms are too small to affect the log-price.
Here, each of the n firms can influence the price and cannot be neglected.
Global uncertainty was not considered in (Jovanovic, 1982).

4 Main result
In this section, we present the main result of the paper in the form of the following
proposition.

Proposition 4.1. The optimal controls for the n agents are in state-and-conditional
mean-field feedback form:

u∗
i (t) = −s((p(t)− p̄(t))αi(t) + ξi(t)

e−λitri

+ e−λit(p̄(t)− ci)− βi(t)sp̄(t)− sγi(t)
e−λit(ri + r̄i)

.

The conditional optimal price:

dp̄(t) =s

[
a−

n∑
i=1

(
e−λit(p̄(t)− ci)− βi(t)sp̄(t)− sγi(t)

e−λit(ri + r̄i)

)
− p̄(t)

]
dt + σ0dB0(t),

p̄(0) =p̄0.

The stochastic functions αi, βi, γi, δi and ξi are FB0
t −measurable and solve the

following stochastic Riccati system: for 1 ≤ i ≤ n,
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dαi =

2sαi −
s2α2

i

e−λitri

− 2s2αi

∑
j 6=i

αj

e−λjtrj

 dt + αi,0dB0,

αi(T ) = −qe−λiT ,

dβi =

−(e−λit − βis)2

e−λit(ri + r̄i)
+ 2sβi

∑
j 6=i

(e−λjt − βjs)
e−λjt(rj + r̄j)

+ 2βis

 dt + βi,0dB0,

βi(T ) = 0,

dγi = −

βis(a +
∑
j 6=i

e−λjtcj + sγj

e−λjt(rj + r̄j)
) + σ0βi,0 − sγi

∑
j 6=i

(e−λjt − sβj)
e−λjt(rj + r̄j)

+ σ0βi,0 − sγi −
(e−λit − βis)(sγi + e−λitci)

(ri + r̄i)e−λit
) dt− βiσ0dB0,

γi(T ) = 0,

dξi = s

ξi − sαi

∑
j 6=i

ξj

e−λjtrj

− sαiξi

e−λitri

− sξi

∑
j 6=i

αj

e−λjtrj

 dt + ξi,0dB0,

ξi(T ) = 0,

dδi = −

1
2

(sγi + e−λitci)2

e−λit(ri + r̄i)
+ s2ξi

∑
j 6=i

ξj

e−λjtrj

+ 1
2

s2ξ2
i

e−λitri

+ 1
2

βiσ
2
0

+ αi

2
(σ2 +

∫
Θ

µ2(θ)v(dθ)) + sγia + sγi

∑
j 6=i

e−λjtcj + sγj

e−λjt(rj + r̄j)
+ γi,0σ0 ) dt

− σ0γidB0,

δi(T ) = 0.

□
Remark 4.1. The optimal control input u∗

i is independent from the Riccati equation
δi, for all i. Nevertheless, the differential equation δi affects the optimal revenue,
which is given by the initial value of the ansatz, i.e., for all i

E[R∗
i − fi(0, p(0)|FB0

T )] = E[R∗
i −

1
2

αi(0)(p0 − p̄0)2 − 1
2

βi(0)p̄2
0

− ξi(0)(p0 − p̄0)− γi(0)p̄0 − δi(0)|FB0
T )]

= 0.

Proof. We prove it by a backward inductive argument described in the first part 3.2
of the thesis. We start with Prosumer 1 and we use a direct method 6.2 consisting
of the following guess functional for the quadratic discounted revenue functional,

84



4. Main result

f1(t, p) = 1
2

α1(t)(p− p̄)2 + 1
2

β1(t)p̄2 + ξ1(t)(p− p̄) + γ1(t)p̄ + δ1(t), (B.3)

where α1, β1, γ1, δ1 and ξ1 are random functions of time t, that are FB0
t −measurable

such that
f1(T, p(T )) = −q

2
e−λ1T α1(T )(p(T )− p̄(T ))2.

We derive a formula for df1(t, p) using Itô’s formula for the jump-diffusion process.
We have

dp̄2 =
(
2sp̄(a− D̄ − p̄) + σ2

os
)

dt + 2p̄σodBo, (B.4)

d
[

β1p̄
2

2

]
= p̄2dβ1

2
+ β1d[p̄2]

2
+ β1,op̄σodt, (B.5)

therefore, replacing (B.4) in (B.5) yields

d
[

β1p̄
2

2

]
= 1

2
p̄2dβ1 + 1

2
β1
(
2sp̄

(
a− D̄ − p̄

)
+ σ2

o

)
dt + βip̄σodBo + β1,op̄σodt.

We compute the difference between p and p̄.

d [p− p̄] = −s
(
D − D̄ + p− p̄

)
dt +

(
σdB +

∫
Θ

µ(θ)Ñ(dt, dθ)
)

.

Then,

d[ξ1(p− p̄)] = ξ1

(
−s(D − D̄ + p− p̄)dt + (σdB +

∫
Θ

µ(θ)Ñ(dt, dθ))
)

+ (p− p̄)dξ1,

and

d [p− p̄]2 = 2(p− p̄)
(

σdB +
∫

Θ
µ(θ)Ñ(dt, dθ)

)
− 2s(p− p̄)(D − D̄ + p− p̄)dt

+
(

σ2 +
∫

Θ
µ2(θ)ν(dθ)

)
dt. (B.6)

Moreover,

d
[

α1(p− p̄)2

2

]
= (p− p̄)2

2
dα1 + 1

2
α1d

[
(p− p̄)2

]
+ 0, (B.7)
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and replacing (B.6) in (B.7) yields

d
[

α1(p− p̄)2

2

]
= (p− p̄)2

2
dα1 + 1

2
α1

(
σ2 +

∫
Θ

µ2(θ)ν(dθ)
)

dt

− s(p− p̄)α1(D − D̄ + p− p̄)dt + (p− p̄)α1σdB

+ (p− p̄)α1

∫
Θ

µ(θ)Ñ(dt, dθ).

Finally,

d[γ1p̄] = p̄dγ1 +
(
sγ1

(
a− D̄ − p̄

)
+ γ1,oσo

)
dt + σoγ1dBo.

Thus,

df1(t, p) = (p− p̄)2dα1

2
+ α1

2

(
σ2 +

∫
Θ

µ2(θ)v(dθ)
)

dt

− (s(p− p̄)α1 + sξ1)(D − D̄ + p− p̄)dt + 1
2

p̄2dβ1

+ 1
2

β1(2sp̄(a− D̄ − p̄) + σ2
0)dt + β1p̄σ0dB0 + β1,0p̄σ0dt

+ p̄dγ1 +
(
sα1(a− D̄ − p̄) + γ1,0σ0

)
dt + σ0γ1dB0 + dδ1

+ ((p− p̄)α1 + ξ1)(σdB +
∫

Θ
µ(θ)Ñ(dt, dθ)) + (p− p̄)dξ1.

Note that the expected revenue can be written as

e−λ1tE[p̄u1 − C1(u1)|FB0
T ] = e−λ1t E[(p̄− c1)ū1|FB0

T ]

− e−λ1t E[1
2

r1(u1 − ū1)2 − 1
2

(r1 + r̄1)ū2
1|F

B0
T ].

Next, we integrate df1(t, p) from 0 to T, then take the conditional expectation
with respect to the filtration FB0

T and we, finally, express the difference between the
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revenue and the guess functional evaluated at 0.

E[R1 − f1(0, p(0))|FB0
T ] =

∫ T

0
e−λ1tE[(p̄− c1)ū1

− 1
2

r1(u1 − ū1)2 − 1
2

(r1 + r̄1)ū2
1|F

B0
T ]dt

+ α1(T )− qe−λ1T

2
E[(p(T )− p̄(T ))2|FB0

T ]

+ E[
∫ T

0

(p− p̄)2dα1

2
|FB0

T ]

+ E[
∫ T

0

α1

2

(
σ2 +

∫
Θ

µ2(θ)v(dθ)
)

dt|FB0
T ]

− E[
∫ T

0
(s(p− p̄)α1 + sξ1)(D − D̄ + p− p̄)dt|FB0

T ]

+ 1
2

E[
∫ T

0
β1(2sp̄(a− D̄ − p̄) + σ2

0)dt|FB0
T ]

+ E[
∫ T

0
β1p̄σ0dB0|FB0

T ] + E[
∫ T

0
β1,0p̄σ0dt|FB0

T ]

+ E[
∫ T

0
p̄dγ1|FB0

T ] + E[
∫ T

0
σ0γ1dB0|FB0

T ]

+ E[
∫ T

0
dδ1|FB0

T ] + E[
∫ T

0
(p− p̄)dξ1|FB0

T ]

+ E[
∫ T

0

(
sγ1(a− D̄ − p̄) + γ1,0σ0

)
dt|FB0

T ]

+ 1
2

E[
∫ T

0
p̄2dβ1|FB0

T ].

Now, we rearrange and complete the square for the terms

e−λ1t ( 2(p̄− c1)ū1 − r1(u1 − ū1)2−(r1 + r̄1)ū2
1 )

−2s((p− p̄)α1 + ξ1)(D − D̄)− 2β1sp̄D̄ − 2sγ1D̄

where
D̄ =

n∑
j=1

ūj and D =
n∑

j=1
uj.
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We have

e−λ1t ( 2(p̄− c1)ū1 − r1(u1 − ū1)2 − (r1 + r̄1)ū2
1 )− 2s((p− p̄)α1 + ξ1)(u1 − ū1)

−2s((p− p̄)α1 + ξ1)
n∑

j=2
(uj − ūj)− 2β1sp̄ ū1 − 2sγ1ū1 − 2sβ1p̄

n∑
j=2

ūj

−2sγ1

n∑
j=2

ūj

is equal to

− (r1 + r̄1)e−λ1t

(
ū1 −

e−λ1t(p̄− c1)− β1sp̄− sγ1

e−λ1t(r1 + r̄1)

)2

− r1e
−λ1t

(
u1 − ū1 + s((p− p̄)α1 + ξ1)

e−λ1tr1

)2

+ s2(p− p̄)2α2
1 + 2s2(p− p̄)α1ξ1 + s2ξ2

1
e−λ1tr1

+ (e−λ1t(p̄− c1)− β1sp̄− sγ1)2

e−λ1t(r1 + r̄1)
− 2sβ1p̄

n∑
j=2

ūj

− 2s((p− p̄)α1 + ξ1)
n∑

j=2
(uj − ūj)− 2sγ1

n∑
j=2

ūj.
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Then,

E[R1 − f1(0, p(0))|FB0
T ]

= + α1(T )− qe−λ1T

2
E[(p(T )− p̄(T ))2|FB0

T ]

− E

∫ T

0

r1 + r̄1

2
e−λ1t

(
ū1 −

e−λ1t(p̄− c1)− β1sp̄− sγ1

e−λ1t(r1 + r̄1)

)2

dt|FB0
T


− E

∫ T

0

r1

2
e−λ1t

(
u1 − ū1 + s((p− p̄)α1 + ξ1)

e−λ1tr1

)2

dt|FB0
T


+ E

[∫ T

0

(p− p̄)2

2

{
dα1 − (2sα1 −

s2α2
1

e−λ1tr1
)dt

}
|FB0

T

]

+ E

∫ T

0

(p− p̄)
2

2dξ1 −

2sξ1 + 2sα1

n∑
j=2

(uj − ūj)

 dt

−2s2α1ξ1

e−λ1tr1
dt

}
|FB0

T

]
+ E

∫ T

0

p̄

2

2dγ1 + (2β1s(a−
n∑

j=2
ūj)

+ 2σ0β1,0 − 2sγ1 −
2(e−λ1t − β1s)(sγ1 + e−λ1tc1)

(r1 + r̄1)e−λ1t
)dt

+2β0σ0dB0} |FB0
T

]
+ E

[∫ T

0

p̄2

2

{
dβ1 − (2β1s−

(e−λ1t − β1s)2

e−λ1t(r1 + r̄1)
)dt

}
|FB0

T

]

+ 1
2

E

[∫ T

0

{
2dδ1 + (sγ1 + e−λ1c1)2

e−λ1(r1 + r̄1)
dt + ξ2

1s2

e−λ1tr1
dt + β1σ

2
0dt

− 2sξ1

n∑
j=2

(uj − ūj)dt + α1(σ2 +
∫

Θ
µ2(θ)v(dθ))dt

+ 2saγ1dt− 2sγ1

n∑
j=2

ūjdt + 2γ1,0σ0dt

+2σ0γ1dB0} |FB0
T

]
.

We deduce that E[R1 − f1(0, p(0))|FB0
T ] ≤ 0 and the equality occurs when

ū∗
1 = e−λ1t(p̄− c1)− β1sp̄− sγ1

e−λ1t(r1 + r̄1)
,

and
u∗

1 = −s((p− p̄)α1 + ξ1)
e−λ1tr1

+ ū∗
1.
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Moreover,

dα1 =
(

2sα1 −
s2α2

1
e−λ1tr1

)
dt + α1,0dB0,

α1(T ) = −qe−λ1T ,

dβ1 =
(

2β1s−
(e−λ1t − β1s)2

e−λ1t(r1 + r̄1)

)
dt + β1,0dB0,

β1(T ) = 0,

dγ1 = −

β1s(a−
n∑

j=2
ūj) + σ0β1,0 − sγ1

− (e−λ1t − β1s)(sγ1 + e−λ1tc1)
(r1 + r̄1)e−λ1t

dt− β1σ0dB0,

γ1(T ) = 0,

dξ1 = s

ξ1 + α1

n∑
j=2

(uj − ūj)−
sα1ξ1

e−λ1tr1

 dt

+ ξ1,0dB0,

ξ1(T ) = 0,

dδ1 = −

1
2

(sγ1 + e−λ1tc1)2

e−λ1t(r1 + r̄1)
+ 1

2
ξ2

1s2

e−λ1tr1
+ β1

2
σ2

0 − sξ1

n∑
j=2

(uj − ūj)

+ α1

2
(σ2 +

∫
Θ

µ2(θ)v(dθ)) + sγ1(a−
n∑

j=2
ūj) + γ1,0σ0

dt

− σ0γ1dB0,

α(T ) = 0.

Similarly, we can find u∗
2, . . . , u∗

n−1. Next, we find the optimal control for u∗
n.

Giving ū∗
2, . . . , ū∗

n−1, the conditional log-price dynamics becomes

dp̄ = s

a−
n−1∑
j=1

e−λjt(p̄− cj)− βjsp̄− sγj

e−λjt(rj + r̄j)
− ūn − p̄

 dt

+ σ0dB0, p̄(0) = p̄0.

Now, we use the guess functional

fn(t, p) = 1
2

αn(t)(p− p̄)2 + 1
2

βn(t)p̄2 + ξn(t)(p− p̄) + γn(t)p̄ + δn(t), (B.8)
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where αn, βn, γn and δn and ξn are random functions of time t, that are FB0
t −measurable

such that
fn(T, p(T )) = −q

2
e−λnT αn(t)(p(T )− p̄(T ))2.

Using the Ito formula we obtain

E[Rn − fn(0, p(0))|FB0
T ] =

∫ T

0
e−λntE[(p̄− cn)ūn

− 1
2

rn(un − ūn)2 − 1
2

(rn + r̄n)ū2
n|F

B0
T ]dt

+ αn(T )− qe−λnT

2
E[(p(T )− p̄(T ))2|FB0

T ]

+ E[
∫ T

0

(p− p̄)2dαn

2
|FB0

T ]

+ E[
∫ T

0

αn

2

(
σ2 +

∫
Θ

µ2(θ)v(dθ)
)

dt|FB0
T ]

− E[
∫ T

0
(s(p− p̄)αn + sξn)(D∗ − D̄∗ + p− p̄)dt|FB0

T ]

+ 1
2

E[
∫ T

0
βn(2sp̄(a− D̄∗ − p̄) + σ2

0)dt|FB0
T ]

+ E[
∫ T

0
βnp̄σ0dB0|FB0

T ] + E[
∫ T

0
βn,0p̄σ0dt|FB0

T ]

+ E[
∫ T

0
p̄dγn|FB0

T ] + E[
∫ T

0
σ0γndB0|FB0

T ]

+ E[
∫ T

0
dδn|FB0

T ] + E[
∫ T

0
(p− p̄)dξn|FB0

T ]

+ E[
∫ T

0

(
sγn(a− D̄∗ − p̄) + γn,0σ0

)
dt|FB0

T ]

+ 1
2

E[
∫ T

0
p̄2dβn|FB0

T ],

where
D∗ =

n−1∑
j=1

u∗
j + un and D̄∗ =

n−1∑
j=1

ū∗
j + ūn.
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As for player 1, we complete the squares to obtain

E[Rn − fn(0, p(0))|FB0
T ]

= −E

∫ T

0

rn + r̄n

2
e−λnt

(
ūn −

e−λnt(p̄− cn)− βnsp̄− sγn

e−λnt(rn + r̄n)

)2

dt|FB0
T


− E

∫ T

0

rn

2
e−λnt

(
un − ūn + s((p− p̄)αn + ξn)

e−λntrn

)2

dt|FB0
T


+ E

∫ T

0

(p− p̄)2

2

dαn − (2sαn −
s2α2

n

e−λntrn

)dt− 2s2αn

n−1∑
j=1

αj

e−λjtrj

dt

|FB0
T


+ E

∫ T

0
(p− p̄)

dξn − sξndt +

s2αn

n−1∑
j=1

ξj

e−λjtrj

+s2ξn

n−1∑
j=1

αj

e−λjtrj

+ s2αnξn

e−λntrn

 dt

 |FB0
T


+ E

∫ T

0
p̄

dγn + sβnadt + sβn

n−1∑
j=1

e−λjtcj + sγj

e−λjt(rj + r̄j)
dt− sγn

n−1∑
j=1

e−λjt − sβj

e−λjt(rj + r̄j)
dt

+ σ0βn,0dt− sγndt −(e−λnt − βns)(sγn + e−λntcn)
(rn + r̄n)e−λnt

dt + βnσ0dB0

|FB0
T


+ E

∫ T

0

p̄2

2

dβn −

2βns− (e−λnt − βns)2

e−λnt(rn + r̄n)
+ 2sβn

n−1∑
j=1

(e−λjt − βjs)
e−λjt(rj + r̄j)

 dt

 |FB0
T


+ E

∫ T

0

dδn + 1
2

(sγn + e−λnc2)2

e−λn(rn + r̄n)
dt + s2ξn

n−1∑
j=1

ξj

e−λjtrj

dt

+ 1
2

s2ξ2
n

e−λnrn

dt + 1
2

βnσ2
0dt + αn

2
(σ2 +

∫
Θ

µ2(θ)v(dθ))dt + sγnadt

+ sγn

n−1∑
j=1

e−λjtcj + sγj

e−λjt(rj + r̄i)
dt + γn,0σ0dt + σ0γndB0

|FB0
T

 .

We deduce that E[Rn − fn(0, p(0))|FB0
T ] ≤ 0 and the equality occurs when

ū∗
n = e−λnt(p̄− cn)− βnsp̄− sγn

e−λnt(rn + r̄n)
,

and
u∗

n = −s((p− p̄)αn + ξn)
e−λntrn

+ ū∗
n.
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Moreover,

dαn =
(

2sαn −
s2α2

n

e−λntrn

− 2s2αn

n−1∑
i=1

αi

e−λitri

)
dt + αn,0dB0,

αn(T ) = −qe−λnT ,

dβn =
(
−(e−λnt − βns)2

e−λnt(rn + r̄n)
+ 2sβn

n−1∑
i=1

(e−λit − βis)
e−λit(ri + r̄i)

+ 2βns

)
dt + βn,0dB0,

βn(T ) = 0,

dγn = −

βns(a +
n−1∑
i=1

e−λitci + sγi

e−λit(ri + r̄i)
) + σ0βn,0 − sγn

n−1∑
i=1

(e−λit − sβi)
e−λit(ri + r̄i)

+ σ0βn,0

− sγn −
(e−λnt − βns)(sγn + e−λntcn)

(rn + r̄n)e−λnt

dt− βnσ0dB0,

γn(T ) = 0,

dξn = s

(
ξn − sαn

n−1∑
i=1

ξi

e−λitri

− sαnξn

e−λntrn

− sξn

n−1∑
i=1

αi

e−λitri

)
dt + ξn,0dB0,

ξn(T ) = 0,

dδn = −

1
2

(sγn + e−λnc2)2

e−λn(rn + r̄n)
+ s2ξn

n−1∑
i=1

ξi

e−λitri

+ 1
2

s2ξ2
n

e−λnrn

+ 1
2

βnσ2
0

+ αn

2

(
σ2 +

∫
Θ

µ2(θ)v(dθ)
)

+ sγna + sγn

n−1∑
i=1

e−λitci + sγi

e−λit(ri + r̄i)
+ γn,0σ0

dt

− σ0γndB0,

δn(T ) = 0.

The result follows by replacing backwardly the optimal solutions. ■

5 Numerical examples
The prosumers do not necessarily have the same equipment and technology. In order
to produce electricity based on solar panels, solar cells are made from a semiconduct-
ing material that converts light into electricity. The most common material used as
a semiconductor during the solar cell manufacturing process is silicon. Monocrys-
talline solar panels, Polycrystalline solar panels, Bifacial solar panels, and thin-film
solar panels, each have their own advantages and disadvantages. It implies that
each agent may have different production cost parameters. Therefore, we consider
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a scenario where all agents are heterogeneous with regard to the structure of their
costs. We, furthermore, consider a homogeneous case, where all the agents have the
same cost structure, to investigate the effect of hierarchy on the optimal solutions
and revenues. Note that the production ui needs to be bounded (by the production
capacity). However, working with the constrained control set [0, c] creates a solution
(bang bang control) that is different from the unconstrained one. In order to capture
it we use penalization term for big control.

Table B.1: Parameters for scenario 1 and 2

Parameter Scenario 1 Scenario 2
T 15 15
p0 10 10
c1, c2, c3 1 1
λ1 0.1 0.1
λ2 0.15 0.1
λ3 0.2 0.1
s 0.5 0.5
a 5 5
r1, r̄1 10 20
r2, r̄2 15 20
r3, r̄3 20 20
q 30 30
σ 2 2
σ0 0 0
µ 0.2 0.2

Table B.2: The revenues of the agents for scenarios 1 and 2.

Scenario R∗
1 R∗

2 R∗
3

1 2.6373e+05 1.4758e+05 9.5672e+04
2 1.3913e+05 1.3913e+05 1.3913e+05

Figures B.1 and B.2 present the behavior of the mean-field-type control problem
corresponding to Scenarios 1 and 2, respectively. We notice different evolution for
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ū∗
i and Ri(u∗

i ), for all i.
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Fig. B.1: Mean-field-type hierarchical performance corresponding to Scenario 1.

Besides, it can be seen that the Riccati equations satisfy the boundary conditions
e.g., αi(T ) = −q = −1.
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Fig. B.2: Mean-field-type hierarchical performance corresponding to Scenario 2.
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6. Conclusion

6 Conclusion
We formulated a mean-field type hierarchical profit optimization problem that in-
cludes n−1 prosumers and a producer in an electricity market. All the agents are cou-
pled through the conditional price dynamics that is given by a linear jump-diffusion
system of conditional mean-field type. We considered a quadratic cost functional of
mean-field-type and we provided a semi-explicit solution of the corresponding mean-
field-type hierarchical control problem, using a direct method consisting of a square
completion technique.

The optimal controls are in state-and-conditional mean-field feedback form. They
coincide with Nash equilibrium solutions obtained in (Djehiche et al., 2020), where
a mean-field-type game between electricity producers is considered. The coincidence
is due to the fact that there are no cross terms uiuj in the considered cost functional.
This makes the expression of the optimal control of each agent does not depend
explicitly on the optimal controls of the others. Therefore, being the first to decide
on a strategy does not award any advantages.

The numerical examples validate our theoretical results. Table B.2 highlights the
fact that in the homogeneous case, where all the agents have the same production
cost parameters, the major player (the producer) does not make the highest profit de-
spite of the precedence of action and thus, the hierarchy has no effect on the optimal
controls, which is in line with Proposition 4.1.
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Perspective

Open questions that we leave for future investigations are:

• finds, theoretically, the optimal ordering among all permutations of heteroge-
nous decision-makers, and examines the benefits/costs of structure design and
leadership.

• Model other real-world problems that have a hierarchical structure, such as
cyber-attacks, the spread of epidemics, and traffic flows, and use real data for
the numerical results.

• Use reinforcement learning (q-learning) and rather artificial intelligence tech-
niques to solve hierarchy MFTG and other types of games.
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